Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Twinning behavior of 316L stainless steel powder for decoration during high velocity compaction forming process
Authors: Ma Chunyu  Chen Xiangping Xiao Zhiyu Yuan Junping 
Unit: Guangzhou Panyu Polytechnic South China University of Technology 
KeyWords: 316L stainless steel powder high velocity compaction  twin corrosion resistance property  impact momentum 
ClassificationCode:TG144
year,vol(issue):pagenumber:2022,47(8):130-137
Abstract:

 For 316L stainless steel powder, the influence laws of impact momentum on densification and twinning behaviors and the influence law of twinning behavior on corrosion resistance property were investigated by density test, scanning electron microscope (SEM), metallographic structure, transmission electron microscope (TEM), selected area electron diffraction (SAED) and electrochemical test. The results show that lower impact momentum can obtain higher density under lower impact energy(192,300 and 588 J), and higher impact momentum can obtain higher density under higher impact energy(972 and 1554 J). Regardless of impact energy or impact momentum, the twin structure can be observed in 316L stainless steel powder during high velocity compaction process, and when the crystal zone axis is [1 1 4], the twin plane is(2 2 0),and higher impact energy can lead to higher twin density. Under lower impact energy, lower impact momentum can lead to twin structure with higher density, and under higher impact energy, higher impact momentum can lead to twin structure with higher density. In addition, density is an important factor affecting the corrosion resistance performance, and the lower the density is, the worse the corrosion resistance property is. However, under the premise of similar densities, the hgiher twin density not only helps to improve the corrosion resistance property, but also effectively reduces the corrosion rate.

Funds:
2020年广东省普通高校特色创新项目(2020KTSCX282);广东省教育科学规划课题(2021GXJK568);广州市基础与应用基础研究项目(202102080149);广州市基础与应用基础研究项目(202201011851)
AuthorIntro:
作者简介:马春宇(1981-),男,硕士,副教授,E-mail:18457725@qq.com;通信作者:陈湘平(1974-),女,博士,高级工程师,E-mail:376254686@qq.com
Reference:

 [1]袁军平,王昶.流行饰品材料及生产工艺[M]. 2.武汉:中国地质大学出版社,2015.


Yuan P JWang C. Popular Jewelry Materials and Production Technology[M]. 2nd Edition.Wuhan:China University of Geosciences Press2015.


[2]Wang J Z, Qu X H, Yin H Q, et al. High velocity compaction of ferrous powder[J]. Powder Technology, 2008, 192(1):131-136.


[3]王建忠,曲选辉,尹海清,等.铁粉的高速压制成形[J].材料研究学报,2008,22 (6):589-592.


Wang J ZQu X HYin H Qet al. High velocity compaction of ferrous powder[J].Chinese Journal of Materials Research2008,22 (6):589-592.


[4]Khan D F, Yin H Q, Usman Z, et al. Improvement of a high velocity compaction technique for iron powder[J]. Acta Metallurgica Sinica:English Letters, 2013, 26(4):399-403.


[5]Khan D F, Yin H Q, Khan Met al. Analysis of density and mechanical properties of iron powder with upper relaxation assist through high velocity compaction[J]. Materials Science Forum, 2013, 749:41-46.


[6]Bos B,Fors C,Larsson T. Industrial implementation of high velocity compaction for improved properties[J]. Powder Metallurgy,2006,49(2):107-109.


[7]李超杰.316L不锈钢温粉末高速压制成形规律及其致密化机理的研究[D].广州:华南理工大学,2012.


Li C J.Investigation on Densification Mechanism and High Velocity Compaction of Warm 316L Stainless Steel Powders[D]. Guangzhou:South China University of Technology,2012.


[8]Zhang H, Zhang L, Dong G, et al. Effects of warm die on high velocity compaction behaviour and mechanical properties of iron based PM alloy[J]. Powder Metallurgy, 2016, 59(2):100-106.


[9]李超杰,肖志瑜,林小为,.316L不锈钢粉末高速压制行为[J].粉末冶金材料科学与工程,2012,17 (3):350-355.


 Li C J,Xiao Z Y,Lin X W, et al. Behaviors of 316L stainless steel powders in high velocity compaction[J].Materials Science and Engineering of Powder Metallurgy,2012,17 (3):350-355.


[10]柯美元.316L不锈钢粉末压坯的烧结行为[J].粉末冶金工业,2012,22 (5):29-32.


Ke M Y.Sintering behaviors of 316L stainless steel powder[J].Powder Metallurgy Industry,2012,22 (5):29-32.


[11]GB/T 5163—2006,烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定[S].


GB/T 5163—2006Sintered metal materialsexcluding hardmetals—Permeable sintered metal materials—Determination of densityoil contentand open porosity[S].


[12]虞海燕,张洋,吕爱强,.异步轧制对316L不锈钢组织与性能的影响[J].材料与冶金学报,2009,8 (1):69-72.


 Yu H Y,Zhang Y, Lvy A Q, et al.Effect of cross shear rolling on microstructure and properties of 316L stainless steel[J].Jourmal of Materials and Metallurgy,2009,8 (1):69-72.


[13]虞海燕,张洋,吕爱强,.轧制工艺对316L不锈钢组织和耐蚀性能的影响[J].材料科学与工艺,2010,18(2):202-205.


Yu H Y,Zhang Y,Lvy A Q,et al.Effect of rolling process on microstructure and corrosion behavior of 316L stainless steel[J].Materials Science & Technology,2010,18(2):202-205.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com