Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior of 17Cr2Ni2MoVNb and 20Cr2Ni4A gear steels
Authors: Dong Mingzhen1 2  Yan Yongming2 Ouyang Xuemei1 Yuan Wufeng3 Yang Renqi3 Yang Shaopeng2 4 
Unit: 1.College of Materials Science and Engineering Xiangtan University 2.Institute of Special Steels  Central Iron and Steel Research Institute 3.Jianglu Electromechanical Group Co.  Ltd. 4.Technology Center Maanshan Iron and Steel Co. Ltd. 
KeyWords: gear steel  high temperature deformation  hot deformation activation energy  Zener-Hollomon parameter  dynamic recrystalization 
ClassificationCode:TG142
year,vol(issue):pagenumber:2022,47(9):230-237
Abstract:

 The thermal deformation behavior of 17Cr2Ni2MoVNb and 20Cr2Ni4A gear steels were studied by Gleeble-3800 thermal simulation test machine, respectively, and the thermal deformation activation energy for the two kinds of gear steels was calculated to construct the constitutive equation by the work hardening curves. The results show that the two kinds of gear steels exhibit obvious dynamic recrystallization at low strain rate, while at high strain rate, 20Cr2Ni4A steel exhibits dynamic recovery at 1000 and 17Cr2Ni2MoVNb steel exhibits dynamic recovery at 1000-1150 . Under the same deformation conditions, the peak stress and critical stress of 17Cr2Ni2MoVNb steel are higher than those of 20Cr2Ni4A steel, and the thermal deformation activation energy of 17Cr2Ni2MoVNb and 20Cr2Ni4A steels are 374 and 324 kJ·mol-1, respectively. The difference between the stress characteristic values and the thermal deformation activation energy between the two kinds of gear steels is mainly due to the different contents of Ni, Mo and Nb, which have different effects on dynamic recrystallization. At low strain rate, the optional deformation temperature for the two kinds of gear steels is the same, while at high strain rate, the processing temperature of 17Cr2Ni2MoVNb steel can be selected to be more than 100 higher than that of 20Cr2Ni4A steel.

 

Funds:
国家重点专项(20T60860B)
AuthorIntro:
董明振(1996-),男,硕士研究生 E-mail:dongmz0126@163.com 通信作者:闫永明(1986-),男,博士,高级工程师 E-mail:yanyongming@nercast.com
Reference:

 [1]杜劭峰, 赵文军, 洪振军. 17Cr2Ni2MoVNb20Cr2Ni4A钢齿轮渗碳质量与弯曲疲劳寿命的试验研究[J]. 金属热处理, 201439(7):12-18.


 


Du S F, Zhao W J, Hong Z J. Carburizing quality and bending fatigue life of 17Cr2Ni2MoVNb and 20Cr2Ni4A steel gears[J]. Heat Treatment of Metals201439 (7):12-18.


 


[2]伦建伟, 刘伟, 杨洋, . 35CrMoV钢高温塑性变形行为及其本构方程建立[J]. 锻压技术, 2021, 46(3): 216-220.


 


Lun J W,Liu W,Yang Y, et al. High temperature plastic deformation behavior and constitutive equation establishment of 35CrMoV steel[J]. Forging Stamping Technology, 2021, 46(3): 216-220.


 


[3]张文汉. V-Nb微合金化齿轮钢及其热处理工艺和力学性能的研究[D]. 武汉:武汉科技大学, 2007.


 


Zhang W H. A Study on FabricationHeat-treatments and Mechanical Properties of V-Nb Microalloyed Gear Steel [D]. Wuhan: Wuhan University of Science and Technology, 2007.


 


[4]周洪刚, 朱旭, 刘克,等. 17Cr2Ni2MoVNb钢的渗碳淬火工艺[J]. 金属热处理, 2019, 44(10): 117-121.


 


Zhou H G, Zhu X, Liu Ket al. Carburizing and quenching process of 17Cr2Ni2MoVNb steel [J]. Heat Treatment of Metals, 2019, 44(10): 117-121.


 


[5]马潇, 徐乐,王毛球,. 25Cr3Mo3NiNbZr钢热变形行为及微观组织研究[J].热加工工艺, 2019,48(19):23-29.


 


Ma X, Xu L, Wang M Qet al . Study on hot deformation behavior and microstructure of 25Cr3Mo3NiNbZr steel[J]. Hot Working Technology, 2019,48(19):23-29.


 


[6]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, Taylor & Francis, 1998, 43(6): 243-258.


 


[7]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136.


 


[8]Jonas J J, Quelennec X, Lan J, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57(9):2748-2756.


 


[9]Moreira A, Junior J, Balancin O. Prediction of steel flow stresses under hot working conditions[J]. Materials Research, 2005, 8(3):309-315.


 


[10]Thomas Schambron, Chen L, Taliah Gooch, et al. Effect of Mo concentration on dynamic recrystallization behavior of low carbon microalloyed steels[J]. Steel Research International, 2013, 84(12):1191-1195.


 


[11]Mejía I, Salas-Reyes A E, Bedolla-Jacuinde A. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel[J]. Materials Science and Engineering: A, 2014, 616: 229-239.


 


[12]赵嫚嫚, 秦森, 冯捷,. AlNi1Cr9Al(13)Ni(17)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.


 


Zhao M M, Qin S, Feng J, et.al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(13)Ni(17)WVNbB steel[J]. Acta Metallurgica Sinica, 2020, 56(7): 960-968.


 


[13]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1): 137-148.


 


[14]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.


 


[15]Seok M Y, Choi I C, Zhao Y, et al. Microalloying effect on the activation energy of hot deformation[J]. Steel Research International, 2015, 86(7):817-820.


 


[16]Cao Y, Xiao F, Qiao G, et al. Quantitative research on effects of Nb on hot deformation behaviors of high-Nb microalloyed steels[J]. Materials Science and Engineering: A, 2011, 530: 277-284.


 


[17]Mannan P, Kostryzhev A G, Zurob H, et al. Hot deformation behaviour of Ni-30Fe-C and Ni-30Fe-Nb-C model alloys[J]. Materials Science and Engineering: A, 2015, 641: 160-171.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com