Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Comparison on forming quality and static strength for self-piercing riveting joints of laminated plates with different sandwich materials and AA5052 aluminum alloy
Authors: Huang Zhichao  Zhang Yukuan  Jiang Yuqiang 
Unit: Key Laboratory of Conveyance and Equipment  Ministry of Education  East China Jiaotong University 
KeyWords: sandwich material  laminated plate  self-piercing riveting  forming quality  static strength 
ClassificationCode:TG938
year,vol(issue):pagenumber:2022,47(11):87-94
Abstract:

 In order to compare forming quality and static strength for self-piercing riveting joints of laminated plates with different sandwich materials and AA5052 aluminum alloy,the laminated plates with the thickness of 1.5 mm were prepared by using M005 acrylic high-strength structural adhesive, EVA foam and nickel foam as interlayers, respectively, and the self-piercing riveting test was carried out by two kinds of plate combination methods. The results show that in the aspect of forming quality, the forming quality of joints when taking the laminated plate as the upper plate is better than that when taking the laminated plate as the lower plate, and the type of sandwich material affects the forming quality of joints. The forming quality of the laminated palte with EVA foam is the best, the laminated plate with nickel foam is the second, and the laminated plate with M005 acrylic high-strength structural adhesive has the worst forming quality. The forming quality of joints affects the static strength of joints. The better the forming quality of joints is, the greater the static strength of corresponding joints is. In terms of failure mode, when the laminated plate is used as the upper plate, the failure mode of joints is that the rivet pulls out the aluminum alloy plate, and when laminated plate is used as the lower plate, the failure mode of joints is that the lower substrate of laminated plate is pulled out by rivets, accompanied by the tensile tear of the upper substrate and the sandwich material of laminated plate. 

Funds:
国家自然科学基金资助项目(51875201)
AuthorIntro:
作者简介:黄志超(1971-),男,博士,教授,E-mail:hzcosu@163.com
Reference:

 [1]李永兵,李亚庭,楼铭,等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报,201248(18): 44-54.


Li Y B, Li Y T, Lou M, et al. Lightweight of car body and its challenges to joining technologies[J]. Journal of Mechanical Engineering, 2012, 48 (18): 44-54.


[2]李宁宁,吕贻旬,刘慎. 浅谈汽车车身轻量化问题[J]. 有色金属加工,202049(5): 14-16.


Li N N, Lyu Y X, Liu S. Discussion on lightweight of automobile body[J]. Nonferrous Metals Processing, 2020, 49 (5): 14-16.


[3]李伟,靳诚忠,刘思远. 夹层板大挠度问题的力学表征与数值模拟[J]. 沈阳航空航天大学学报,201431(1): 24-27.


Li W, Jin C Z, Liu S Y. Mechanical performance and numerical simulation of sandwich plate with large deflection[J]. Journal of Shenyang Aerospace University, 2014, 31(1)24-27.


[4]张元明,赵鹏飞. 低速小型无人机中的复合材料结构及分析[J]. 玻璃钢/复合材料,2003(6): 36-40.


Zhang Y M, Zhao P F. Analysis of composite UAV structure [J]. Fiber Reinforced Plastics/Composites, 2003(6): 36-40.


[5]刘衍峰,张达,周振功,等. 纤维金属层合板连接结构拉脱失效机理分析[J]. 机电工程技术,202049(8): 44-49.


Liu Y F, Zhang D, Zhou Z G, et al. Pull-through failure properties analysis of fiber-metal laminates bolted joint structure [J]. Mechanical & Electrical Engineering Technology, 2020, 49(8): 44-49.


[6]孙颖,臧旭,乔静,等. 复合材料层合板沉头螺栓连接结构失效机制[J].飞机设计,202141(4): 74-80.


Sun Y, Zang X, Qiao J, et al. Failure mechanism of countersunk bolted connections in composite laminates[J]. Aircraft Design, 2021, 41(4): 74-80.


[7]胡春幸,侯玉亮,铁瑛,等. 不同胶接参数对CFRP层合板单搭胶接结构强度的影响及优化设计[J]. 机械工程学报,202157(8): 154-165.


Hu C X, Hou Y L, Tie Y, et al. Influence of different bonding parameters on the strength of CFRP laminates with single lap bonding structure and optimization[J]. Journal of Mechanical Engineering2021, 57 (8): 154-165.


[8]黄志超,赖家美,张永超. 自冲铆接技术[M]. 江西:江西高校出版社,2017.


Huang Z C, Lai J M, Zhang Y C. Self-Piercing Riveting Technology[M]. JiangxiJiangxi Universitys and Colleges Press, 2017.


[9]黄志超,刘帅红,赖家美,等. 结构胶对钢铝自冲铆接接头力学性能的影响[J]. 塑性工程学报,202128(7): 157-162.


Huang Z C, Liu S H, Lai J M, et al. Influence of structural adhesive on mechanical properties of steel-aluminum self-piercing riveted joints[J]. Journal of Plasticity Engineering, 202128(7): 157-162.


[10]刘洋, 何晓聪,邢保英,等. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 材料导报,201832(14): 2431-2436.


Liu Y, He X C, Xing B Y, et al. Fatigue properties and failure mechanisms of self-piercing riveted joints in metal foam sandwich structures[J]. Materials Review, 2018, 32(14): 2431-2436.


[11]吕枫,邓将华,陈如明,等. 板料组合方式对铝/钢异种金属板自冲铆接头性能的影响[J]. 塑性工程学报,201926(4): 134-141.


Lyu F, Deng J H, Chen R M, et al. Effect of sheet combination modes on joints properties of aluminum/steel dissimilar metal sheets under self-piercing riveting[J]. Journal of Plasticity Engineering, 2019, 26(4): 134-141.


[12]Zhang X L, He X C, Gu F S, et al. Self-piercing riveting of aluminium-lithium alloy sheet materials[J]. Journal of Materials Processing Technology, 2019, 2683: 192-200.


[13]Ma Y W, Xian X R, Lou M, et al. Friction self-piercing riveting (F-SPR) of dissimilar materials[J]. Procedia Engineering, 2017, 207: 950-955.


[14]Haque R. Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 83-93.


[15]Kam D H, Jeong T E, Kim J. A quality study of a self-piercing riveted joint between vibration-damping aluminum alloy and dissimilar materials[J]. Applied Sciences, 2020, 10(17):5947.


[16]Kam D H, Jeong T E, Kim M G, et al. Self-piercing riveted joint of vibration-damping steel and aluminum alloy[J]. Applied Sciences, 2019, 9(21):4575.


[17]马长福. 简明粘接技术手册[M]. 上海:上海科学技术出版社,2012.


Ma C F. Concise Bonding Technical Manual[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012.


[18]辛锋先,张钱城,卢天健. 轻质夹层材料的制备和振动声学性能[J]. 力学进展,201040(4): 375-399.


Xin F X, Zhang Q C, Lu T J. Advances in lightweight sandwich materials and sturcturesManufacture and vibroacoustic performances[J]. Advances in Mechanics, 2010, 40(4): 375-399.


[19]王志瑾,Khaliulin V ISkripkin E. 皱褶结构芯格构型的几何设计方法[J]. 南京航空航天大学学报,2002(1): 6-11.


Wang Z J, Khaliulin V I, Skripkin E. Geometry design method of folded structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002(1): 6-11.


[20]万淑敏,Hu S J,李双义,等. 半空心铆钉自冲铆接的工艺参数及铆接质量的判定[J]. 天津大学学报,2007(4):494-498.


Wan S M, Hu S J, Li S Y, et al. Process parameters and joint evaluation of self-piercing riveting with half-hollow rivets[J]. Journal of Tianjin University, 2007(4): 494-498.


[21]Li D Z, Chrysanthou A, Patel I, et al. Self-piercing riveting-A review[J].The International Journal of Advanced Manufacturing Technology, 2017,(92):1777-1824.


[22]Li D Z, Han L, Chrysanthou A, et al. The effect of setting velocity on the static and fatigue strengths of self-piercing riveted joints for automotive applications[A]. TEM 2014 143rd Annual Meeting & ExhibitionAnnual Meeting Supplemental Proceedings[C]. San Diego:2014.


[23]Zhang X L, He X C, Xing B Y, et al. Quasi-static and fatigue characteristics of self-piercing riveted joints in dissimilar aluminium-lithium alloy and titanium sheets[J]. Journal of Materials Research and Technology,2020, 9(3):5699-5711.


[24]黄志超,程露,涂林鹏,等. 不同纤维铺层玻璃-碳纤维混杂复合材料与铝合金自冲铆接强度对比[J]. 塑性工程学报,202027(10): 54-61.


Huang Z C, Cheng L, Tu L P, et al. Comparison on self-piercing riveting strength of glass-carbon fiber hybrid composites with different fiber layers and aluminum alloy[J]. Journal of Plasticity Engineering, 2020, 27(10): 54-61.


[25]卢毅,何晓聪,王医锋,等. 钛合金同种/异种板自冲铆接头静态失效机理分析[J]. 热加工工艺,201544(15): 104-108.


Lu Y, He X C, Wang Y F, et al. Analysis on static failure mechanism of self-piercing riveting joints in similar and dissimilar sheets with titanium alloy[J]. Hot Working Technology2015, 44(15): 104-108.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com