Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Multi-objective prediction on cross-rolling and perforated pipe shape for seamless steel pipe
Authors: Jia Shiying  Wang Qinghua  Wang Zhenyan  Hu Jianhua  Shuang Yuanhua  Zhou Xinliang 
Unit: Taiyuan University of Science and Technology Technical Center of Taiyuan Heavy Industry Co.  Ltd. 
KeyWords: seamless steel pipe  cross-rolling and preforating  least squares support vector regression  pipe shape prediction process parameters 
ClassificationCode:TP183
year,vol(issue):pagenumber:2022,47(10):169-175
Abstract:

In view of the influence of process parameters on the dimensional accuracy of capillaky in the cross-rolling and preforating production of seamless steel pipe, a multi-objective prediction model based on least squares support vector machine was established considering the factors of production process and production demand optimization, and the influencing factors were analyzed and screened by the grey correlation analysis method. Then, taking five process parameters of forward extension amount, roll spacing, guide plate spacing, plug diameter and blank diameter as inputs of the prediction model and the two pipe shape parameters of capillary wall thickness and outer diameter as outputs of the prediction model, considering the small data sample and the cross correlation between input and output parameters, a multi-input and multi-output least squares support vector regression model was constructed to predict the capillary shape. Furthermore, taking the actual data as training samples, the effectiveness of the model was proved by simulation experiments. And the research results provide reference for the adjustment and optimization of the process parameters required in the cross-rolling and preforating production process of seamless steel pipe.

Funds:
山西省科技重大专项(20191102009)
AuthorIntro:
加世滢(1996-),女,硕士研究生,E-mail:13103421357@163.com;通信作者:王清华(1980-),女,博士,讲师,E-mail:2002043@tyust.edu.cn
Reference:

[1]栾治伟, 张文新, 王柏琳, . 无缝钢管热轧生产过程中的轧辊孔型匹配问题[J]. 计算机集成制造系统, 2017,23(12): 2676-2682.

Luan Z W, Zhang W X, Wang B L, et al. Roller pass matching problem for hotrolled seamless steel tube [J]. Computer Integrated Manufacturing Systems, 2017, 23(12): 2676-2682.

[2]双远华, 王付杰, 王清华. 无缝钢管连续斜轧工艺与设备的探索[J]. 机械工程学报, 2017,53(10): 18-24.

Shuang Y H, Wang F J, Wang Q H. Explorative study of tandem skew rolling process and equipment for producing seamless steel tubes [J]. Journal of Mechanical Engineering, 2017, 53(10): 18-24.


[3]Zhang W Y, Ju D Y, Zhao H Y, et al. Fuzzy controller optimized by genetic algorithm for the molten metal level in the twin roll strip casting process[J]. Materials Science Forum, 2015, 833: 197-200.

[4]周华民, 高煌, 张云, . 注塑成型工艺参数自动设置与优化技术[J]. 精密成形工程, 2016,8(1): 7-13.

Zhou H M, Gao H, Zhang Y, et al. Automatic setting and optimization of injection molding process parameters[J]. Journal of Netshape Forming Engineering, 2016,8(1): 7-13.

[5]Son J, Lee D, Kim I, et al. A study on online learning neural network for prediction for rolling force in hotrolling mill[J]. Journal of Materials Processing Technology, 2005,164-165: 1612-1617.

[6]陈鑫, 朱明杰, 吴敏, . 结合机理计算与神经网络预测的无缝钢管轧制力建模[J]. 冶金自动化, 2015,39(4): 32-37.

Chen X, Zhu M J, Wu M, et al. Rolling force modeling for seamless steel pipe combining mechanism model and neural network prediction [J]. Metallurgical Industry Automation, 2015,39(4): 32-37.

[7]高山凤, 刘鸿飞, 郗安民, . 热轧板带横向厚度分布的预测与控制[J]. 哈尔滨工业大学学报, 2016,48(1): 180-183.

Gao S F, Liu H F, Xi A M, et al. Prediction and control of thickness transverse distribution in hot rolling strip [J].Journal of Harbin Institute of Technology, 2016,48(1): 180-183.

[8]Wang Z H, Liu Y M, Gong D Y, et al. A new predictive model for strip crown in hot rolling by using the hybrid AMPSOSVRbased approach[J]. Steel Research International, 2018,89(7): 1800003.

[9]Zhu X, Zhu Z. The generalized predictive control of bacteria concentration in marine lysozyme fermentation process[J]. Food Science & Nutrition, 2018,6(8): 2459-2465.

[10]Yusof Y, Kamaruddin S S, Husni H, et al. Forecasting model based on LSSVM and ABC for natural resource commodity[J]. International Journal of Computer Theory and Engineering, 2013,5(6): 906-909.

[11]Suykens J A K, Van Gestel T, De Brabanter J, et al. Least Square Support Vector Machine[M]. Singapore: World Scientific Publishing, 2002.

[12]Liu X, Zhu Q, Lu H. Modeling multiresponse surfaces for airfoil design with multiple-output-gaussian-process regression[J]. Journal of Aircraft, 2014, 51(3): 740-747.

[13]Xu S, An X, Qiao X, et al. Multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2013,34(9): 1078-1084.

[14]杨勇, 黄文波, 金裕成, . 基于MSVRArousal-Valence情感模型的表情识别研究[J]. 重庆邮电大学学报:自然科学版, 2016,28(6): 836-843.

Yang Y, Huang W B, Jin Y C, et al. A study of expression recognition based on MSVR and Arousal-Valence emotion model[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2016,28(6): 836-843.

[15]魏子茹, 卢延辉, 王鹏宇, . 基于CRITIC法的灰色关联理论在无人驾驶车辆测试评价中的应用[J]. 机械工程学报, 2021,57(12):99-108.

Wei Z R, Lu Y H, Wang P Y, et al. Application of grey correlation theory based on CRITIC method in autonomous vehicles test and evaluation [J]. Journal of Mechanical Engineering, 2021,57(12): 99-108.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com