Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Damage evolution on 7075-T6 aluminum alloy under complex strain path loading
Authors: Zheng Tangjie1 2  Li Gui1 2 3  Xu Cheng1 2  Fang Xuebin1 2 
Unit: 1.Key Laboratory of Metallurgical Equipment and Control Technology  Education Ministry  Wuhan University of Science and   Technology  2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering    Wuhan University of Science and Technology  3.Precision Manufacturing Institute    Wuhan University of Science and Technology 
KeyWords: 7075-T6 aluminum alloy  damage model  complex strain path  void volume fraction  uniaxial tension 
ClassificationCode:TG335
year,vol(issue):pagenumber:2022,47(12):227-233
Abstract:

 For 7075-T6 high-strength aluminum alloy, the mechanical properties after loading in complex strain paths were ascertained, and complex strain assembly model with adjustable deformation was designed. Based on the GTN constitutive model, the simulations of uniaxial tension and uniaxial tension under complex strain path loading were carried out, respectively, the influences of different deformations on the displacement-load curve and true stress-true strain curve for simulated specimen were studied, and the influences of four void volume fractions of fO, fN,fC , fF on the true stress-true strain curve for specimen under complex strain path loading were analyzed. The results show that after applying complex strain paths, the stress and strain at fracture site of sample decrease greatly. fO  and fC  mainly affect the necking stage of the curve, fN  mainly affects the yield stage of the curve, while  fF has little effect on the curve. The results show that compared with the simulation results of uniaxial tension, the true stress-true strain curve under complex strain path loading is more accurate for the damage evolution process of

automotive panels during the stamping production process.

Funds:
华中科技大学材料成形与模具技术国家重点实验室开放基金资助项目(P2020-019)
AuthorIntro:
郑唐杰(1997-),男,硕士 E-mail:jiemao1010@163.com 通信作者:李贵(1983-),男,博士,副教授 E-mail:leegui2030@wust.edu.cn
Reference:

 [1]李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5):47-61.


 


Li G J, Liu X L. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020,28(5):47-61.


 


[2]洪腾蛟, 董福龙, 丁凤娟, . 铝合金在汽车轻量化领域的应用研究[J]. 热加工工艺, 2020, 49(4):1-6.


 


Hong T J, Dong F L, Ding F J, et al. Application of aluminum alloy in automotive lightweight[J]. Hot Working Technology, 2020, 49(4):1-6.


 


[3]刘辰辰, 陈亚军, 李柯, . 7075航空铝合金原位腐蚀-多轴疲劳行为分析[J]. 中国机械工程, 2019, 30(5):615-621.


 


Liu C C, Chen Y J, Li K, et al. Analysis for in-situ corrosion-multiaxial fatigue behaviors of 7075 aerospace aluminum alloys[J]. China Mechanical Engineering, 2019, 30(5):615-621.


 


[4]王大鹏,李晓峰. 某汽车内板冲压成形工艺优化及回弹补偿[J]. 塑性工程学报,2022,29(9):40-46.


 


Wang D P, Li X F. Stamping process optimization and springback compensation of an automobile inner plate[J]. Journal of Plasticity Engineering, 2022,29(9):40-46.


 


[5]徐涛涛,孔垂品,李俊杰,. 汽车覆盖件冲压工艺分析系统[J]. 塑性工程学报,2020,27(5):74-82.


 


Xu T T, Kong C P, Li J J, et al. Process analysis system for stamping of automobile panel[J]. Journal of Plasticity Engineering, 2020,27(5):74-82.


 


[6]Majidi O, Jahazi M, Bombardier N. Prediction of material behavior during biaxial stretching of superplastic 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology,2019,102(5/8):2357-2366.


 


[7]Qin J S, Bjorn H, Odd S H. Experimental characterization and modeling of aluminum alloy AA3103 for complex single and double strain-path changes[J]. International Journal of Plasticity,2019,112:158-171.


 


[8]Li Z F, Lu S H, Yang W K, et al. Study on the ductile fracture rule of 6061-T6 aluminum alloy sheet under different strain conditions[J]. Transactions of the Indian Institute of Metals,2019,72(10):2721-2728.


 


[9]Rahmaan T, Noder J, Abedini A, et al. Anisotropic plasticity characterization of 6000- and 7000-series aluminum sheet alloys at various strain rates[J]. International Journal of Impact Engineering, 2020, 135(C):103390.1-103390.20.


 


[10]Liao J, Jose A S, Augusto B L, et al. Mechanical microstructural behaviour and modelling of dual phase steels under complex deformation paths[J]. International Journal of Plasticity,2017,93269-290.


 


[11]韩非,操召兵.复杂应变路径下QP980超高强钢的非弹性回复行为[J],清华大学学报:自然科学版,201858(10)921-928.


 


Han F, Cao Z B. Inelastic of Q&P980 ultra high strength steel with a complicated deformation path[J]. Journal of Tsinghua University:Science and Technology, 2018,58(10):921-928.


 


[12]Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490.


 


[13]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169.


 


[14]郭建超,张立研,曹艳艳,. 基于GTN损伤模型的双相钢激光拼焊板冲压成形失效行为研究[J]. 热加工工艺,2020,49(17):86-89,94.


 


Guo J C, Zhang L Y, Cao Y Y, et al. Research on failure behavior of stamping forming of dual-phase steel laser tailor welded blanks based on GTN Damage model[J]. Hot Working Technology,2020,49(17):86-89,94.


 


[15]盈亮,刘文权,王丹彤,. 7075-T6铝合金温成形损伤演化试验与仿真[J]. 中国有色金属学报,2016,26(7):1383-1390.


 


Ying L, Liu W Q, Wang D T, et al. Experimental and simulation of damage evolution behavior for 7075-T6 aluminum alloy in warm forming[J]. The Chinese Journal of Nonferrous Metals, 2016,26(7):1383-1390.


 


[16]柯俊逸. 复杂加载条件下金属板料的成形极限研究[D]. 武汉: 华中科技大学,2018.


 


Ke J Y.A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Philosophy in Engineering[D].Wuhan Huazhong University of Science Technology,2018.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com