Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of surface laser quenching on its microstructure and properties for P20 automobile die steel
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG156. 34
year,vol(issue):pagenumber:2023,48(1):222-228
Abstract:

 The surface heat treatment of P20 die steel was carried out by laser quenching technology. Then, the microstructure and friction and wear properties of quenched layer were studied, and the strengthening mechanism of the die steel by laser quenching technology was explained. The results show that the matrix is the decomposed pearlite, and the organization in quenched area for P20 die steel is acicular martensite and lath martensite, and with the increasing of laser power, the martensite structure coarsens. The solid solutions of (Cr, Fe) and (Mn, Fe) are mainly formed after quenching, and the solid solution strengthening is produced. The hardness of P20 die steel after laser quenching is greatly improved, the maximum hardness value is 520 HV, and the measured depth of the hardening layer is about 0. 93 mm. When the laser power is 1800 W, the wear rate of the quenched layer is only 0. 36%, and the friction coefficient is 0. 2013. The friction and wear mechanism of laser quenching for P20 die steel is abrasive wear and oxidation wear, accompanied by a small amount of spalling phenomenon.

Funds:
国家自然科学基金青年基金资助项目(51905126);国家重点研发计划项目(2019YFC1511400)
AuthorIntro:
作者简介: 王建军(1980-), 男, 学士, 高级技师 E-mail: 475988826@ qq. com 通信作者: 张 新(1980-), 男, 博士, 研究员 E-mail: kmzx201@ 163. com
Reference:

 [1]  Li H X, Qi H L, Song C H, et al. Selective laser melting of P20 mould steel: Investigation on the resultant microstructure, hightemperature hardness and corrosion resistance [J]. Powder Metallurgy,2018, 61 (1): 21-27.


[2]  Park C, Sim A, Ahn S, et al. Influence of laser surface engineering of AISI P20-improved mold steel on wear and corrosion behaviors [J]. Surface and Coatings Technology, 2019, 377: 124852.

[3]  Yan G, Lu S, Zhang M, et al. Wear and corrosion behavior of P20 steel surface modified by gas nitriding with laser surface engineering[J]. Applied Surface Science, 2020, 530: 147306.

[4]  Zhang Z, Yu T, Kovacevic R. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC [ J].Applied Surface Science, 2017, 410: 225-240.

[5]  Telasang G, Dutta Majumdar J, Wasekar N, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel [J]. Metallurgical and Materials Transactions A, 2015, 46 (5): 2309-2321.

[6]  Wang B, Zhao X, Li W, et al. Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel [J]. Applied Surface Science, 2018, 431: 39-43.

[7]  Peng T, Dai M, Cai W, et al. The enhancement effect of salt bath preoxidation on salt bath nitriding for AISI 1045 steel [J]. Applied Surface Science, 2019, 484: 610-615.

[8]  Hoppius J S, Kukreja L M, Knyazeva M, et al. On femtosecond laser shock peening of stainless steel AISI 316 [J]. Applied Surface Science, 2018, 435: 1120-1124.

[9]  Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6 [J]. Optics and Lasers in Engineering, 2016, 77:112-117.

[10] Lee K H, Choi S W, Yoon T J, et al. Microstructure and hardness of surface melting hardened zone of mold steel, SM45C using Yb: YAG disk laser [J]. Journal of Welding and Joining, 2016, 34(1): 75-81.

[11] Trdan U, Skarba M, Porro J A, et al. Application of massive laser shock processing for improvement of mechanical and tribological properties [J]. Surface and Coatings Technology, 2018, 342: 1-11.

[12] Abeens M, Muruganandhan R, Thirumavalavan K, et al. Surface modification of AA7075 T651 by laser shock peening to improve the wear characteristics [J]. Materials Research Express, 2019, 6 (6): 066519.

[13] Chen Z, Zhu Q, Wang J, et al. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear [ J]. Optics & Laser Technology, 2018, 103: 118-125.

[14] Lesyk D, Martinez S, Dzhemelinskyy V, et al. Surface microrelief and hardness of laser hardened and ultrasonically peened AISI D2 tool steel [ J]. Surface and Coatings Technology, 2015, 278:108-120.

[15] Li H, Chen G, Zhang G, et al. Characteristics of the interface of a laser-quenched steel substrate and chromium electroplate [ J].Surface and Coatings Technology, 2006, 201 (3-4): 902-907.

[16] Rana J, Goswami G, Jha S, et al. Experimental studies on the microstructure and hardness of laser-treated steel specimens [ J]. Optics & Laser Technology, 2007, 39 (2): 385-393.

[17] 张茂, 张嘉城, 谈发堂, 等. 模具清洁热处理过程的形性精 确控制[J]. 锻压技术, 2021, 46 (9): 34-42.

Zhang M, Zhang J C, Tan F T, et al. Precise control on shape and performance during clean heat treatment process for die [J]. Forging & Stamping Technology, 2021, 46 (9): 34-42.

[18] GB/ T 18683—2002, 钢铁件激光表面淬火[S].

GB/ T 18683—2002, Laser surface quenching of iron and steel parts [S].

[19] 王新淑. 金属材料磨损失效及防护的探讨[J]. 中国高新区,2017, (12): 127.

Wang X S. Discussion on wear failure and protection of metal materials[J]. Science & Technology Industry Parks, 2017, (12): 127.

[20] 黄文, 薛召露, 刘侠, 等. 等离子喷涂CoCrAlTaY-Al2O3 涂层的制备及高温摩擦磨损性能研究[J]. 稀有金属, 2021, 45(7): 836-847.

Huang W, Xue Z L, Liu X, et al. Preparation and friction-wear property of plasma-sprayed CoCrAlTaY-Al2O3 coating [J]. Chinese Journal of Rare Metals, 2021, 45 (7): 836-847.

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com