Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation on power spinning process for TB6 titanium alloy cylindrical parts
Authors: Zhu Enrui  Cui Xia  Guo Lulu  Ouyang Delai 
Unit: Nanchang Hangkong University 
KeyWords: titanium alloy  spinning  cylindrical part thinning rate  spindle speed  wheel feeding rate  deformation temperature 
ClassificationCode:TG376
year,vol(issue):pagenumber:2023,48(2):126-134
Abstract:

The spinning process model of TB6 titanium alloy cylindrical parts was established, and the deformation process of workpiece under different process parameters was simulated by finite element software. Then, the force and deformation characteristics of workpiece during the spinning process were analyzed, and the influence laws of process parameters such as thinning rate (30%-45%), deformation temperature (900-1050 ℃), spindle speed (3-6 r·s-1) and wheel feeding rate (1.0-2.5 mm·s-1) on equivalent stress and equivalent strain during the spinning process were studied. The results show that the deformation temperature and the spindle speed have little influence on the forming quality of workpiece, while the wheel feeding rate and the thinning rate have significant influence on the forming quality. With the increasing of the wheel feeding rate, the roundness accuracy of outer diameter shows V-shaped distribution, and with the increasing of the thinning rate, the maximum equivalent stress and the equivalent strain of workpiece increase accordingly. Thus, the optimal combination of spinning process parameters obtained by comprehensive optimization is the thinning rate of 30%, the deformation temperature of 1000 ℃, the spindle speed of 4 r·s-1, and the wheel feeding rate of 2 mm·s-1.

Funds:
国家自然科学基金地区科学基金资助项目(51761029)
AuthorIntro:
作者简介:朱恩锐 (1998-),男,硕士研究生,E-mail:287148134@qq.com;通信作者:崔霞(1979-),女,博士,副教授,E-mail:Cuixia2000@163.com
Reference:

[1]易湘斌, 张俊喜,李宝栋,. 高温、高应变率下TB6钛合金的动态压缩性能[J].稀有金属材料与工程,2019,48(4):1220-1224.


Yi X B, Zhang J X, Li B D, et al. Dynamic compressive mechanical properties of TB6 titanium alloy under high temperature and high strain rate [J]. Rare Metal Materials and Engineering,2019,48(4):1220-1224.


[2]周松, 张新钰,回丽,.含缺陷的TB6钛合金疲劳性能研究和强度评估[J].热加工工艺,2021, 50(12):39-43,49.


Zhou S, Zhang X Y, Hui L, et al. Fatigue performance research and strength evaluation of TB6 titanium alloy with defects[J]. Hot Working Technology,2021, 50(12):39-43,49.


[3]卢彦林, 王昊群.基于1060铝合金筒形件旋压加工数值模拟[J].机床与液压,2018,46(10):39-42.


Lu Y L, Wang H Q. Numerical simulation on spinning manufacturing for 1060 aluminum alloy cylinder part[J]. Machine Tool & Hydraulics,2018,46(10):39-42.


[4]张坦, 李新和,魏准,.工艺参数对大径厚比薄壁筒形件旋压成形质量的影响研究[J].塑性工程学报,2017,24(2):75-81.


Zhang T, Li X H, Wei Z, et al. Influence of process parameters on the flow forming quality of thin-walled tube with large diameter-thickness ratio[J]. Journal of Plasticity Engineering,2017,24(2):75-81.


[5]周宇, 赵勇,于忠奇,.交叉内筋薄壁筒体错距旋压成形数值仿真[J].上海交通大学学报,2022,56(1):62-69.


Zhou Y, Zhao Y, Yu Z Q, et al. Numerical simulation of stagger spinning of cylindrical part with cross inner ribs[J]. Journal of Shanghai Jiaotong University,2022,56(1):62-69.


[6]吕伟, 詹梅,王鹏,.带螺旋内筋薄壁筒形件旋压变形特征[J].宇航材料工艺,2021,51(4):104-108.


Lyu W, Zhan M, Wang P, et al. Deformation mechanism in flow forming of thin-walled tube with helical grid-stiffened ribs[J]. Aerospace Materials & Technology,2021,51(4):104-108.


[7]张媛琦, 王文先,陈洪胜,.AZ91筒形件旋压的组织演化及微/纳力学性能[J].稀有金属材料与工程,2019,48(2):580-586.


Zhang Y Q, Wang W X, Chen H S, et al. Microstructure evolution and micro/nano mechanical properties of AZ91 tube spinning[J]. Rare Metal Materials and Engineering,2019,48(2):580-586.


[8]Han D, Zhan M, Yang H. Deformation mechanism of TA15 shells in hot shear spinning under various load conditions[J]. Rare Metal Materials and Engineering, 2013, 42(2): 243-248.


[9]杜驰, 韩冬,李增辉,.D406A钢大直径圆筒强力旋压数值模拟研究[J].锻压装备与制造技术,2016,51(3):96-100.


Du C, Han D, Li Z H, et al. Numerical simulation research of power spinning process for D406A steel large diameter cylinder[J]. China Metalforming Equipment & Manufacturing Technology,2016,51(3):96-100.


[10]晏畅, 肖刚锋,夏琴香,.锥筒形件剪切-拉深复合旋压成形可旋性表征方法研究[J].锻压技术,2021,46(5):94-100.


Yan C, Xiao G F, Xia Q X, et al. Research on characterization method of spinnability in shear-deep drawing composite spinning for conical cylindrical part[J]. Forging & Stamping Technology,2021,46(5):94-100.


[11]朱慧安. TC21钛合金筒形件旋压过程与织构演化有限元模拟研究[D].南昌: 南昌航空大学,2020.


Zhu H A. Finite Element Simulation Study on Tube Spinning Process and Texture Evolution of TC21 Titanium Alloy[D]. Nanchang: Nanchang Hangkong University,2020.


[12]张涛, 樊文欣,郭代峰,.筒形件旋压的力学性能研究[J].热加工工艺,2017,46(13):157-159.


Zhang T, Fan W X, Guo D F, et al. Research on mechanical properties of cylindrical workpieces spinning[J]. Hot Working Technology,2017,46(13):157-159.


[13]胡强, 闫亮明,杜青春,.两旋轮旋压首道次压下率对轮毂旋压成形的影响[J].塑性工程学报,2022,29(2):134-142.


Hu Q, Yan L M, Du Q C, et al. Effect of the first pass reduction rate on spinning forming of hub during two wheels spinning[J]. Journal of Plasticity Engineering,2022,29(2):134-142.


[14]Bao R Q,Huang X,Cao C X. Deformation behavior and mechanisms of Ti-1023 alloy[J]. Transactions of Nonferrous Metals Society of China,2006(2):274-280.


[15]肖刚锋, 张义龙,夏琴香,.镍基高温合金锥筒形件拉深旋压时成形质量及组织性能研究[J].锻压技术,2021,46(9):190-196.


Xiao G F, Zhang Y L, Xia Q X, et al. Research on forming quality,microstructure and properties for Ni-based super alloy conical-cylindrical parts during deep-drawing spinning[J]. Forging & Stamping Technology,2021,46(9):190-196.


[16]郭亚明, 徐恒秋,薛秀琴,.2A12铝合金薄壁壳体强力旋压成形工艺[J].锻压技术,2021,46(5):143-150.


Guo Y M, Xu H Q, Xue X Q, et al. Power spinning process of thin-walled shell parts for 2A12 aluminum alloy[J]. Forging & Stamping Technology,2021,46(5):143-150.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com