Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature rheological behavior and thermal processing diagram for 34CrNiMo6 steel
Authors: Gou Chunmei Dong Jing Cui Dandan 
Unit: Xinjiang Vocational and Technical College of Communications 
KeyWords: 34CrNiMo6 steel high temperature rheological behavior Arrhenius model thermal processing diagram dynamic recrystallization 
ClassificationCode:TG142
year,vol(issue):pagenumber:2023,48(2):233-240
Abstract:

 The high temperature rheological properties of 34CrNiMo6 steel was studied and the best thermal processing window was obtained. Firstly, the isothermal thermal compression test of 34CrNiMo6 steel was carried out by Gleeble-3500 thermal simulated test machine under the deformation temperature of 1173-1473 K and the strain rate of 0.001-1 s-1, and the true stress-true strain curves under different strain rates and deformation temperatures were obtained. Then, the Arrhenius model was used to conduct multiple nonlinear regression on the constitutive relationship of the material, and the results show that the regression accuracy is high. Secondly, the thermal processing diagram of 34CrNiMo6 steel was constructed and analyzed by using the rheological data, and considering all strain conditions, the thermal processing window of 34CrNiMo6 steel should avoid the regions where the deformation temperature is lower than 1300 K and  the strain rate is higher than 0.05 s-1, and the deformation temperature is higher than 1400 K and the strain rate is higher than 0.14 s-1. Finally, the metallographic analysis shows that 34CrNiMo6 steel has the characteristics of inhomogeneous grains and irregular grain boundaries in the region where the strain rate sensitivity coefficient, energy dissipation rate and instability criterion are small, which is due to incomplete dynamic recrystallization. However, complete dynamic recovery and dynamic recrystallization occur in the region where the strain rate sensitivity coefficient, energy dissipation rate and instability criterion are relatively large, and the microstructure is relatively uniform.

Funds:
全国交通运输职业教育科研项目(2019B57)
AuthorIntro:
作者简介:苟春梅(1985-), 女, 硕士,副教授,E-mail:gcm8507@163.com
Reference:

[1]侯政良, 王柱飞, 张雪冬, . 热处理工艺对34CrNiMo6钢性能的影响研究[J]. 精密成形工程, 2018, 10(6): 38-42.


Hou Z L, Wang Z F, Zhang X D, et al. Effects of heat treatment on performance of 34CrNiMo6 steel[J]. Journal of Netshape Forming Engineering, 2018, 10(6): 38-42.


[2]康凤, 杨鄂川, 林军, . 曲轴用34CrNiMo6高强结构钢的热变形行为研究[J]. 材料导报, 2013, 27(4): 49-5155.


Kang F, Yang E C, Lin J, et al. Study on hot deformation behavior of high strength construction steel 34CrNiMo6 for crankshafts[J]. Materials Review, 2013, 27(4): 49-5155.


[3]郭浩, 尚勇, 魏金. 热处理温度对34CrNiMo6钢组织与力学性能的影响[J]. 热加工工艺, 2019, 48(24):170-173.


Guo H, Shang Y, Wei J. Effects of heat treatment temperature on microstructure and mechanical properties of 34CrNiMo6 steel[J]. Hot Working Technology, 2019, 48(24):170-173.


[4]方琴, 陈庚, 吴永波, . 热处理对34CrNiMo6钢组织和力学性能的影响[J]. 铸造技术, 2017, 38(8):1866-18671871.


Fang Q, Chen G, Wu Y B, et al. Influence of heat treatment on microstructure and mechanical properties of 34CrNiMo6 steel[J]. Foundry Technology, 2017, 38(8):1866-18671871.


[5]郑福胜. 热处理工艺对34CrNiMo6组织性能的影响[D]. 沈阳:东北大学, 2018.


Zheng F S. Effect of Heat Treatment Process on Microstructure and Properties of 34CrNiMo6[D]. ShenyangNortheastern University, 2018.


[6]蔡红, 叶俭, 王丽莲, . 高铁车轴用34CrNiMo6钢的热处理工艺[J]. 金属热处理, 2012, 37(4):95-98.


Cai H, Ye J, Wang L L, et al. Heat treatment process of 34CrNiMo6 steel for high-speed railway axle[J]. Heat Treatment of Metals, 2012, 37(4):95-98.


[7]张赟凯, 杜诗文. 34CrNiMo6钢的热变形行为及热加工图研究[J]. 锻压装备与制造技术, 2021, 56(3):97-105.


Zhang Y K, Du S W. Research on the hot deformation behavior and hot working map of 34CrNiMo6 steel[J]. China Metalforming Equipment & Manufacturing Technology, 2021, 56(3):97-105.


[8]胡丰泽, 张波, 马茂, . 舰船柴油机用34CrNiMo6钢工艺性能的研究[J]. 机械管理开发, 2011, (3): 12-13, 15.


Hu F Z, Zhang B, Ma M, et al. Research on 34CrNiMo6 processing property used for naval vessel engines[J]. Mechanical Management and Development, 2011, (3): 12-13, 15.


[9]尹小燕, 刘兴凯, 丁宏翔,等. HNi55-7-4-2合金高温本构模型修正及变形激活能演化规律[J]. 锻压技术, 2021, 46(7):221-228.


Yin X Y, Liu X K, Ding H X, et al. High temperature constitutive model modification and evolution law of deformation activation energy for HNi55-7-4-2 alloy[J]. Forging & Stamping Technology, 2021, 46(7):221-228.


[10]陈园园, 李永堂, 庞晓龙, . 考虑应变补偿的铸态42CrMo钢本构模型[J]. 锻压技术, 2021, 46(5):246-252.


Chen Y Y, Li Y T, Pang X L, et al. Constitutive model of as-cast 42CrMo steel based on strain compensation[J]. Forging & Stamping Technology, 2021, 46(5):246-252.


[11]王天祥, 鲁世强, 王克鲁, . Ti60合金的流动应力行为及本构关系[J]. 塑性工程学报, 2019, 26(6):271-279.


Wang T X, Lu S Q, Wang K L, et al. Flow stress behavior and constitutive relationship of Ti60 alloy[J]. Journal of Plasticity Engineering, 2019, 26(6):271-279.


[12]张龙, 王东城, 马晓宝, . 30Cr2Ni2Mo合金钢高温流变应力模型[J]. 塑性工程学报, 2017, 24(4):144-149172.


Zhang L, Wang D C, Ma X B, et al. Flow stress model of alloy steel 30Cr2Ni2Mo at high temperature[J]. Journal of Plasticity Engineering, 2017, 24(4):144-149172.


[13]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.


[14]权国政, 温海荣, 梁建婷, . TB6钛合金热变形行为及加工图[J]. 材料热处理学报, 2015, 36(4):25-33.


Quan G Z, Wen H R, Liang J T, et al. Hot deformation behavior and processing maps of TB6 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(4):25-33.


[15]Narayana M S V S, Nageswara R B, Kashyap B P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel[J]. Journal of Materials Processing Technology, 2005, 166(2): 268-278.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com