Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Application of constant stiffness method and tangent stiffness method in numerical simulation for metal materials
Authors: Xu Cheng   Li Gui   Fang Xuebin 
Unit: Wuhan University of Science and   Technology 
KeyWords: constant stiffness method tangent stiffness method UMAT subroutine FORTRAN language incremental step 
ClassificationCode:TG389
year,vol(issue):pagenumber:2023,48(2):257-263
Abstract:

 Two nonlinear finite element calculation methods of constant stiffness method and tangent stiffness method were compared and studied, and two algorithms were embedded into ABAQUS software by writing UMAT subroutine in FORTRAN language. Then, the influences of element size and incremental step on the calculation efficiency, accuracy and stability of the two algorithms were analyzed by the uniaxial tensile test and numerical simulation results of AA7075-T6 aluminum alloy samples. The results show that the calculation efficiency of the constant stiffness method is higher at different incremental steps and element sizes. However, if the calculation precision is taken as the standard, the calculation efficiency of the tangent stiffness method is higher. With the same element size, the smaller the incremental step is, the higher the precision of the algorithm is, but the greater the fluctuation of the constant stiffness method is. Since the influence of the incremental step is dominant, if the incremental step is very small, the element size has little effect on the precision of the constant stiffness method, otherwise, the effect is greater. However, the calculation precision of the tangent stiffness method is slightly affected by the element size. Thus, the comprehensive analysis shows that the stability of the tangent stiffness method is higher, which provides a basis and reference for developers of relevant UMAT subroutine.

 
Funds:
华中科技大学材料成形与模具技术国家重点实验室开放基金资助项目(P2020-019)
AuthorIntro:
作者简介:许成(1998-), 男, 硕士研究生,E-mail:xuchengmode@163.com;通信作者:李贵(1983-), 男, 博士, 副教授,E-mail:leegui2030@wust.edu.cn
Reference:

[1]陈飞, 王成雨,李伟刚, . Abaqus二次开发在航空弓形结构件喷丸强化模拟中的应用[J]. 计算机辅助工程, 2020,29(2): 55-60.


Chen FWang C YLi W Get al. Application of Abaqus secondary development in shot peening strengthening of aerospace arc-shaped frame[J]. Computer Aided Engineering, 2020,29(2): 55-60.


[2]冯嵩, 郑颖人,孔亮, . 广义塑性力学多重屈服面模型隐式积分算法及其ABAQUS二次开发[J]. 岩石力学与工程学报, 2011,30(10):2019-2025.


Feng SZheng Y RKong Let al. Implicit algorithm of multi-yield-surface model based on generalized plasticity and its redevelopment in ABAQUS[J]. Chinese Journal of Rock Mechanics and Engineering2011,30(10):2019-2025.


[3]乔顺成, 吴建军,展学鹏. 各向异性屈服准则的UMAT子程序二次开发研究[J]. 锻压装备与制造技术, 201853(4): 89-97.


Qiao S CWu J JZhan X P. Study on secondary development of UMAT subroutines with anisotropic yield criterion[J]. China Metalforming Equipment & Manufacturing Technology, 201853(4): 89-97.


[4]Eslami H,Jayasinghe L B,Waldmann D. Nonlinear three-dimensional anisotropic material model for failure analysis of timber[J]. Engineering Failure Analysis, 2021,130:105764.


[5]张梦梦, 陈泽中,朱欢欢,. 基于ABAQUS二次开发的参数化型材拉弯前处理模块研究[J]. 制造业自动化, 202244(5): 82-85.


Zhang M MChen Z ZZhu H Het al. Development of the parametric pre-process module of strech bending for profile based on ABAQUS with pyhton[J]. Manufacturing Automation, 202244(5): 82-85.


[6]霍永强, 李言,崔莅沐,.ABAQUS二次开发在冷滚打成形参数化建模与仿真研究中的应用[J/OL].机械科学与技术:1-12[2022-04-12].DOI:10.13433/j.cnki.1003-8728.20220100.


Huo Y Q,Li YCui L Met al.Application of ABAQUS secondary development in parametric modeling and simulation of cold roll-beating forming[J/OL]. Mechanical Science and Technology for Aerospace Engineering:1-12[2022-04-12].DOI:10.13433/j.cnki.1003-8728.20220100.


[7]Zhang J P,Zhu C Z,Li X Q, et al. Characterizing the three-stage rutting behavior of asphalt pavement with semi-rigid base by using UMAT in ABAQUS[J]. Construction and Building Materials, 2017,140: 496-507.


[8]曹鹏, 冯德成,沈新普, . 基于ABAQUS平台的塑性损伤子程序开发及其稳定性研究[J]. 工程力学, 2012,29S2: 101-106.


Cao PFeng D CShen X Pet al. Evelopment of plasticity-damage model based on ABAQUS and algorithm stability analysis[J]. Engineering Mechanics, 2012,29S2: 101-106.


[9]Zhang S L,Wang Q G,Zhou W X. Implementation of the Tresca yield criterion in finite element analysis of burst capacity of pipelines[J]. International Journal of Pressure Vessels and Piping, 2019, 172: 180-187.


[10]Liu W C,Chen B K. Sheet metal anisotropy and optimal non-round blank design in high-speed multi-step forming of AA3104-H19 aluminium alloy can body[J]. The International Journal of Advanced Manufacturing Technology, 2018,95(9-12): 4265-4277.


[11]Yang Z Y,Zhao C C,Dong G J, et al. Experimental calibration of ductile fracture parameters and forming limit of AA7075-T6 sheet[J]. Journal of Materials Processing Technology, 2021,291:117044.


[12]Castillo-Méndez C,Ortiz A. Numerical simulation data and FORTRAN code to compare the stress response of two transversely isotropic hyperelastic models in ABAQUS[J]. Data in Brief, 202241: 107853.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com