[1]刘雪. 环形燃料组件定位格架外条带及栅元模具设计与工艺开发[D]. 长沙:湖南大学, 2018.
Liu X. Design and Process Development of Outer Strip and Cell Mold for Annular Fuel Assembly Spacer Grid[D]. Changsha: Hunan University, 2018.
[2]Lei C Y, Mao J Z, Zhang X M, et al. A comparison study of the yield surface exponent of the Barlat yield function on the forming limit curve prediction of zirconium alloys with M-K method[J]. International Journal of Material Forming, 2021, 14: 467-484.
[3]邓振鹏. 新锆合金薄板带材的可冲性及冲制工艺优化[D]. 长沙:湖南大学, 2019.
Deng Z P. Punching Property and Punching Process Optimization of New Zirconium Alloy Sheet Strip[D]. Changsha: Hunan University, 2019.
[4]李燕乐, 陈晓晓, 翟维东, 等. 基于响应曲面法的板料渐进成形最大减薄率预测与分析[J]. 吉林大学学报: 工学版, 2019,49(2):529-535.
Li Y L, Chen X X, Zhai W D, et al. Prediction and analysis of maximum thinning rate of sheet metal incremental forming based on response surface method[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49(2): 529-535.
[5]何彦, 肖圳, 李育锋, 等. 使用CNN-SVR的汽车组合仪表组装质量预测方法[J]. 中国机械工程, 2022,33(7):825-833.
He Y, Xiao Z, Li Y F, et al. Assembly quality prediction method of automobile combination meter using CNN-SVR[J]. China Mechanical Engineering, 2022, 33(7): 825-833.
[6]鲍宏, 杨靖, 柯庆镝, 等. 基于支持向量回归的熔丝制造3D打印能效优化模型[J]. 中国机械工程, 2022,33(18): 2215-2226.
Bao H, Yang J, Ke Q D, et al. Energy efficiency optimization model of fuse filament manufacturing 3D printing based on support vector regression[J]. China Mechanical Engineering, 2022,33(18): 2215-2226.
[7]冯斌. 基于MLP的锆合金刚凸成形减薄率预测[D]. 长沙:湖南大学, 2020.
Feng B. Prediction of Thinning Rate of Zirconium Alloy Rigid-convex Forming Based on MLP[D]. Changsha: Hunan University, 2020.
[8]谢延敏, 孙新强, 田银, 等. 基于改进粒子群算法和小波神经网络的高强钢扭曲回弹工艺参数优化[J]. 机械工程学报, 2016,52(19):162-167.
Xie Y M, Sun X Q, Tian Y, et al. Optimization of process parameters for twisting springback of high-strength steel based on improved particle swarm optimization and wavelet neural network[J]. Journal of Mechanical Engineering, 2016, 52(19): 162-167.
[9]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2021, Metallic materials—Tensile test—Part 1: Test method at room temperature [S].
[10]童洲, 谈毅,段海峰,等. 基于正交试验和灰色关联的模块锻件热处理工艺优化[J]. 锻压技术,2021,46(8):186-192.
Tong Z,Tan Y,Duan H F,et al. Optimization of heat treatment process for module forgings based on orthogonal test and gray correlation[J]. Forging & Stamping Technology,2021,46(8):186-192.
[11]王格格, 郭涛, 李贵洋. 多层感知器深度卷积生成对抗网络[J]. 计算机科学, 2019,46(9):243-249.
Wang G G, Guo T, Li G Y. Multilayer perceptron deep convolutional generative adversarial networks[J]. Computer Science, 2019, 46(9): 243-249.
[12]王小川, 史峰, 郁磊, 等. Matlab神经网络43个案例分析[M]. 北京:北京航空航天大学出版社, 2013.
Wang X C, Shi F, Yu L, et al. Matlab Neural Network 43 Case Analysis[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2013.
[13]孙恒, 耿金亮, 那凤祎, 等. 基于粒子群优化算法的双混合制冷剂液化工艺参数优化[J]. 天然气化工—C1化学与化工, 2022,47(2):116-121.
Sun H, Geng J L, Na F Y, et al. Optimization of process parameters for dual-mixed refrigerant liquefaction based on particle swarm optimization algorithm[J]. Natural Gas Chemical Industry, 2022,47(2): 116-121.
|