Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Integral reconstruction analysis on deformation curvature for hot-rolled strip with error compensation
Authors: Luo Caiyu1  Liu Ming2 
Unit: 1.College of Mechanical and Electrical Engineering  Aksu Vocational and Technical College   2. College of Electrical Engineering  North China University of Science and Technology 
KeyWords: deformation of hot-rolled strip  curve reconstruction  curvature  error compensation  strain distribution 
ClassificationCode:TG156
year,vol(issue):pagenumber:2023,48(3):139-143
Abstract:

 In order to analyze the deformation and reconstruction process of hot-rolled strip deeply, the surface area of hot-rolled strip was inspected by the distributed method, and the error compensation reconstruction algorithm formed by curvature integral recursive method was determined. Then, the model simulation and deformation analysis of hot rolled strip were carried out to promote the significant improvement of reconstruction performance. According to the curvature data of the surface of hot-rolled strip, the strain distribution characteristics were judged, and the deformation data of hot-rolled strip were calculated. Furthermore, the multiple curves were formed and interpolated, so as to complete the deformation reconstruction process of the whole hot-rolled strip. The results show that with the increasing of load, the larger reconstruction variance is formed, and the maximum error decreases. Compared with the tangent angle recursive algorithm, the curvature integral recurision algorithm has smaller error and time consumption and obtains better reconstruction performance comparied with the tangential recurision method. Thus, the research result has a good effect on controlling the deformation degree of hot-rolled strips and has good practical value on improving the precision and stability control of strips in rolling process.

Funds:
河北省自然科学基金资助项目(B2016209059)
AuthorIntro:
作者简介:罗彩玉(1980-),女,硕士,副教授 E-mail:a15134457133@163.com
Reference:

 [1]陈彤, 李永亮,邝霜,等. 热轧带钢均匀化冷却问题分析与控制措施[J]. 锻压技术,2021,46(7):83-89.


Chen T,Li Y L,Kuang S,et al. Analysis and control measures on uniform cooling for hot rolling strip steel[J]. Forging & Stamping Technology,2021,46(7):83-89.

[2]刘明华, 张强,刘英华,等. 基于机器学习的热轧轧制力预测[J]. 锻压技术,2021,46(10):233-241.

Liu M H, Zhang Q, Liu Y H, et al. Prediction of rolling force in hot rolling based on machine learning[J]. Forging & Stamping Technology,2021,46(10):233-241.

[3]王少, 陈斌, 司小明, 等. 热轧板带表面质量智能化自动判定系统的开发应用[J]. 中国冶金, 2019, 29(7): 70-73,78. 

Wang S, Chen B, Si X M, et al. Development and application of intelligent automatic judgment system for surface quality of hot rolled strip [J]. China Metallurgy, 2019, 29(7): 70-73,78.

[4]马明, 丁桦, 唐正友, 等. 双相不锈钢2205热轧板微观组织及塑性变形的均匀性[J]. 材料与冶金学报, 2018, 17(4): 254-262.

Ma M, Ding H, Tang Z Y, et al. Microstructure and plastic deformation uniformity of dual-phase stainless steel 2205 hot rolled sheet [J]. Journal of Materials and Metallurgy, 2018, 17(4): 254-262.

[5]杨淑贞, 董彬. 基于PSO-BP的双辊热轧AZ91D镁合金板横向厚度预测[J]. 特种铸造及有色合金, 2018, 38(11): 1212-1214.

Yang S Z, Dong B. Prediction of transverse thickness of twin-roll hot rolled AZ91D magnesium alloy plate based on PSO-BP [J]. Special Casting & Nonferrous Alloys, 2018, 38(11): 1212-1214.

[6]王建功, 赵虎, 夏银锋, 等. 常规热连轧线Ti-IF钢铁素体轧制工艺研究与应用[J]. 钢铁, 2017, 52(10): 65-71.

Wang J G, Zhao H, Xia Y F, et al. Research and application of Ti-IF steel rolling process in conventional hot strip rolling line[J]. Iron and Steel, 2017, 52(10): 65-71.

[7]Lee K, Aihara A, Puntsagdash G, et al. Feasibility study on a strain based deflection monitoring system for wind turbine blades[J]. Mechanical Systems and Signal Processing, 2017, 82: 117-129.

[8]张福范. 悬臂矩形板的弯曲[J]. 清华大学学报:自然科学版,1979,(2): 43-51.

Zhang F F. Bending of a rectangular cantilever plate[J]. Journal of Tsinghua University: Science and Technology, 1979,(2): 43-51.

[9]易金聪. 基于FBG 传感阵列的智能结构形态感知与主动监测研究[D]. 上海: 上海大学, 2014. 

Yi J C. Shape Perception and Active Monitoring for Smart Structure Using FBG Sensor Array[D]. Shanghai: Shanghai University, 2014.

[10]侯祥林, 郑夕健, 张良, 等. 热轧板带弯曲大变形高阶非线性偏微分方程推导与优化算法研究[J]. 物理学报, 2012, 61(18): 9-18.

Hou X L, Zheng X J, Zhang L, et al. Research on derivation and optimization algorithm of high-order nonlinear partial differential equations for thin plate bending large deformation[J]. Acta Physica Sinica, 2012, 61(18): 9-18.

[11]Parakkat A D,Muthuganapathy R. Crawl through neighbors: A simple curve reconstruction algorithm[J]. Computer Gragpics Forum, 2016, 35(5):177-186.

[12]王勇, 章定国, 范纪华, 等. 基于B样条插值法的柔性矩形热轧板带的动力学分析[J]. 振动工程学报, 2019, 32(5): 811-821.

Wang Y, Zhang D G, Fan J H, et al. Dynamic analysis of flexible rectangular thin plate based on B-spline interpolation [J]. Journal of Vibration Engineering, 2019, 32(5): 811-821.

[13]谭跃刚, 黄兵, 刘虎, 等. 基于分布应变的薄板变形重构算法研究[J]. 机械工程学报, 2020, 56(13): 242-248. 

Tan Y G, Huang B, Liu H, et al. Research on deformation reconstruction algorithm of thin plate based on distributed strain[J]. Journal of Mechanical Engineering, 2020, 56(13): 242-248.

[14]马晓彬, 张杰, 李洪波, 等. 基于曲率积分法考虑包辛格效应的辊式矫直交变弯曲研究[J]. 塑性工程学报, 2018, 25(6): 118-124.

Ma X B, Zhang J, Li H B, et al. Research on roller straightening alternating bending considering bauschinger effect based on curvature integral method [J]. Journal of Plasticity Engineering, 2018, 25(6): 118-124.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com