Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior on 34CrNi3MoV steel
Authors: Zou Zhipeng1  Xu Dong1  2  Zheng Bing1  3  Wang Yiqun2  Wang Xuexi2  Zheng Lei4  5 
Unit: 1.Technology Innovation Center for High Quality Cold Heading Steel of Hebei Province  Hebei University of Engineering 2.Henan Zhongyuan Special Steel Equipment Manufacturing Co.  Ltd.  3.School of Materials and Metallurgy  University of Science and Technology Liaoning  4.Engineering Research Center for Wind Tower Steel of High Toughness of Hebei Province  Heibei Puyang Iron and Steel Co. Ltd. 5.Technology Innovation Center for Wear Resistant Steel Plate of High Plasticity and Toughness of  Hebei Province  Hebei Puyang Iron and Steel Co.  Ltd. 
KeyWords: 34CrNi3MoV steel  isothermal compression  rheological stress  constitutive equation  strain compensation 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(3):211-218
Abstract:

 In order to analyze the thermal deformation behavior of 34CrNi3MoV steel, the isothermal thermal compression tests were conducted on Gleeble-1500 thermo-mechanical simulator with the deformation temperature of 800-1200 ℃ and the strain rate of 0.01-10 s-1, the corresponding rheological stress curves were obtained. Then, the sensitivity of rheological stress to deformation parameters was analyzed, and the values of material parameters α, n, Q and A under different strain amounts were calculated. Furthermore, the corresponding relationship between each material parameter and strain amount was fitted by the fifth-order polynomial, and the high-temperature rheological stress constitutive equation of 34CrNi3MoV steel was regressed by the strain-compensated Arrhenius model. The results show that the dynamic recrystallization curve characteristics of 34CrNi3MoV steel is obvious when the temperature is 1000-1200 ℃ and the strain rate is 0.01-1 s-1, and the peak stress becomes more obvious with the decreasing of strain rate and the increasing of deformation temperature. The rheological stress predicted by the constitutive equation has a high agreement with the test results, and the average relative error Rav in the entire test range is only 5.52%, which indicates that the constructed model is reliable. 

Funds:
国家自然科学基金联合基金资助项目 (NSFC)(U20A20272);河北省军民科技协同创新专项(22351001D);邯郸市科学研究计划重点项目(21122015004);河北省高等学校科学技术研究项目(CXY2023004)
AuthorIntro:
作者简介:邹志鹏 (1987-),男,硕士研究生 E-mail: zzp9963@163.com 通信作者:徐东 (1984-),男,博士,教授,博士生导师 E-mail:xudong_xyz@163.com34CrNi3MoV
Reference:

 [1]禹兴胜, 武川, 石如星, 等. 55NiCrMoV7模具钢锻造过程微观组织演化实验与模拟仿真[J]. 塑性工程学报, 2021, 28(6): 174-184.


Yu X S, Wu C, Shi R X, et al. Microstructure evolution of 55NiCrMoV7 die steel during forging processing:Experiment and simulation[J]. Journal of Plasticity Engineering, 2021, 28(6): 174-184.

[2]Gan C L, Zhang K H, Qi W J, et al. Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11): 3486-3491.

[3]陈益哲, 庞玉华, 王建国, 等. GH2907合金热变形本构方程[J]. 稀有金属材料与工程, 2019, 48(11): 3577-3584.

Chen Y Z, Pang Y H, Wang J G, et al. Constitutive equation for hot deformation of GH2907 superalloy[J]. Rare Metal Materials and Engineering, 2019, 48(11): 3577-3584.

[4]张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021, 50(1): 212-222.

Zhang B, Yue L, Chen H F, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models[J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222.

[5]王巧玲, 唐炳涛, 郑伟. 一种修正的Norton-Hoff本构模型及实验验证[J]. 中国机械工程, 2015, 26(14): 1978-1982.

Wang Q L, Tang B T, Zheng W. A modified Norton-Hoff constitutive model and experimental verification[J]. China Mechanical Engineering, 2015, 26(14): 1978-1982.

[6]李全, 金朝阳. 采用改进和优化的Zerilli-Armstrong本构模型预测AZ80镁合金的高温流动应力[J]. 中国有色金属学报, 2021, 31(8): 2091-2100.

Li Q, Jin C Y. Prediction of high temperature flow stress of AZ80 magnesium alloy by using modified and optimized Zerilli-Armstrong constitutive models[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2091-2100.

[7]彭付申, 陈鑫, 袁战伟, 等. W-20Cu复合材料热变形行为及应变补偿本构模型[J]. 兵器材料科学与工程, 2021, 44(6): 41-46.

Peng F S, Chen X, Yuan Z W, et al. Thermal deformation behavior and strain compensation constitutive model of W-20Cu composites[J]. Ordnance Material Science and Engineering, 2021, 44(6): 41-46.

[8]刘庆琦, 卢晔, 张翼飞, 等. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.

Liu Q Q, Lu Y, Zhang Y F, et al. Thermal deformation behavior of Al19.3Co15Cr15Ni50.7 high entropy alloy [J]. Acta Metallurgica Sinica, 2021, 57 (10): 1299-1308.

[9]李红英, 赵菲, 刘丹, 等. 工程机械用Q1100钢的热变形应变补偿本构方程[J]. 中南大学学报: 自然科学版, 2020, 51(3): 608-618.

Li H Y, Zhao F, Liu D, et al. Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery [J]. Journal of Central South University:Science and Technology, 2020, 51(3): 608-618.

[10]梅金娜, 薛飞, 吴天栋, 等. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(S1): 336-341.

Mei J N, Xue F, Wu T D, et al. Establishment of constitutive equation of FeCrNiMn high entropy alloy [J]. Materials Reports, 2021, 35(S1): 336-341.

[11]王雅静, 刘宗昌, 段宝玉. 34CrNi3MoV钢组织细化工艺的研究[J]. 兵器材料科学与工程, 2013, 36(1): 128-132.

Wang Y J, Liu Z C, Duan B Y. Microstructure of refined 34CrNi3MoV steel[J]. Ordnance Material Science and Engineering, 2013, 36(1): 128-132.

[12]赵勇桃, 刘宗昌, 王玉峰. 34CrNi3MoV钢的混晶及消除措施[J]. 金属热处理, 2007, 32(5): 75-77.

Zhao Y T, Liu Z C, Wang Y F. Mixed grain and elimination measure of 34CrNi3MoV steel [J]. Heat Treatment of Metals, 2007, 32(5): 75-77.

[13]陈曦, 亓耀国, 史晓楠, 等. IN718Plus高温合金的动态再结晶行为及模型研究[J]. 稀有金属, 2019, 43(12): 1260-1268.

Chen X, Qi Y G, Shi X N, et al. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus [J]. Chinese Journal of Rare Metals, 2019, 43(12): 1260-1268.

[14]Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1996, 14(9): 11-36.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com