Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal constitutive equation and thermal processing map on GE1014 steel based on friction correction
Authors: Lian Xuekui Han Shun Liu Yue Li Yong Wang Chunxu Wang Maoqiu 
Unit: Central Iron and Steel Research Institute Co.  Ltd. 
KeyWords: GE1014 steel high temperature rheological curve correction dynamically recrystallized constitutive equation thermal processing map 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(3):219-226
Abstract:

 The high temperature axial compression test was conducted on GE1014 steel under the conditions of the thermal deformation temperature of 850-1250 , the strain rate of 0.01-10 s-1 and the deformation amount of 0.7, and the rheological curves were modified by friction correction. Then, the thermal constitutive equation and Z parameter formula of GE1014 steel were established, and the thermal processing map of GE1014 steel was established based on the theory of dynamic material model. Finally, the accuracy of thermal processing map and the optimum thermal deformation zone were confirmed by analyzing the microstructure of the material after deformation. The results show that friction effect significantly affects the high temperature rheological curve of GE1014 steel at low deformation temperature or high strain rate, and the thermal deformation activation energy of GE1014 steel after fiction correction is calculated as 400.197 kJ·mol-1. When the true strain of the test steel is 0.4 and 0.7 respectively, the maximum energy dissipation efficiency η under the high temperature and low strain rate reaches the maximum of 0.34. Comprehensively analyzing the thermal processing map and the microstructure of the test steel, it is determined that the GE1014 steel under the deformation temperature of 1100-1150 and the strain rate of 0.1 s-1 can obtain the uniform and fine fully dynamically recrystallized structure, and the thermal workability of GE1014 steel is the best at this time.

Funds:
AuthorIntro:
作者简介:廉学魁(1984-),男,博士研究生 E-mail:lxk-84@163.com 通信作者:韩顺(1987-),男,博士,高级工程师 E-mail:hanshunfa@126.com
Reference:

 [1]胡正飞, 吴杏芳,王春旭. 二次硬化高CoNi超高强度合金钢的研究近况[J].钢铁研究学报,2001,13(4): 62-68.


Hu Z F,Wu X F,Wang C X. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001,13(4): 62-68.

[2]Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Materials Science & Engineering A,2019,759:298-302.

[3]厉勇, 王春旭,黄顺喆,等.超高强度钢中M2C和β-NiAl相的复合析出强化行为[J].金属热处理,2018,43(6):50-54.

Li Y,Wang C X,Huang S Z,et al.Combined precipitation strengthening behavior of M2C carbides and β-NiAl intermetallics in ultrahigh strength steel[J]. Heat Treatment of Metals, 2018,43(6):50-54.

[4]Perrut M, Mathon M H, Delagnes D. Small-angle neutron scattering of multiphase secondary hardening steels[J]. Journal of Materials Science, 2012,47(4):1920-1929.

[5]梁锋. 夹杂物对超高强度钢微观破坏机制的研究[D].北京:清华大学,2006.

Liang F. Investigation of Inclusions on Micro Fracture Mechanisms of High Strengthened Steels[D].Beijing: Tsinghua University,2006.

[6]刘路, 詹肇麟,韩顺,等.回火温度对GE1014钢组织与力学性能的影响[J].金属热处理,2018,43(10):133-137.

Liu L,Zhan Z L,Han S,et al. Effect of tempering temperature on microstructure and mechanical properties of GE1014 steel[J]. Heat Treatment of Metals, 2018,43(10):133-137.

[7]Delagnes D,Pettinari-Sturmel F,Mathon M H,et al. Cementite-free martensitic steels: A new route to develop high strength / high toughness grades by modifying the conventional precipitation sequence during tempering[J].Acta Materialia, 2012,60(16): 5877-5888.

[8]刘跃, 韩顺,厉勇,等. 淬火温度对GE1014超高强度钢组织及性能的影响[J].金属热处理,2022,47(2):125-130.

Liu Y,Han S,Li Y,et al. Effect of quenching temperature on microstructure and mechanical properties of GE1014 ultra-high strength steel[J]. Heat Treatment of Metals,2022,47(2):125-130.

[9]厉勇, 王春旭,黄顺喆,等. 复合析出强化超高强度钢20Co14Ni12Cr2MoAl的动态再结晶行为[J]. 金属热处理,2018,43(7):10-11.

Li Y,Wang C X,Huang S Z,et al. Dynamic recrystallization behavior of combined precipitation strengthening 20Co14Ni12Cr2MoAl ultrahigh strength steel[J].Heat Treatment of Metals, 2018,43(7):10-11.

[10]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004,152(2):136-143.

[11]尚丽梅, 王春旭,韩 顺,等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理,2021,46(5):111-117.

Shang L M,Wang C X,Han S,et al. Hot deformation behavior and processing maps of Maraging250 steel based on friction and temperature double correction [J].Heat Treatment of Metals, 2021,46(5):111-117.

[12]Zhu F H, Xiong W, Li X F,et al. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy [J].Rare Metals,2018,37(12):1035-1045.

[13]Hamed Mirzadeh, Jose Maria Cabrera, Abbas Najafizadeh. Constitutive relationships for hot deformation of austenite [J]. Acta Materialia,2011, 59(16): 6441-6448.

[14]Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working [J]. Journal of Materials Processing Technology,2003, 142(1): 289-294.

[15]Zener C,Hollomom J H. Effect of strain rate upon the plastic flow of stress[J]. Journal Applied Physics, 1944, 15(1): 22-32.

[16]Ziegler H. Progress in Solid Mechanics [M]. New Jersey:Wiley Press, 1963.

[17]Prasad Y V R K. Processing maps: A status [J].Journal of Materials Engineering and Performance, 2003,12(6):638-645.

[18]刘爽, 徐长征,丰涵,等. 铸态C-276镍基高温合金的热变形行为及加工图[J]. 热加工工艺,2017,46(23): 105-110.

Liu S, Xu C Z, Feng H, et al. Hot deformation behavior and processing map of as-cast nickel-based C-276 Superalloy[J]. Hot Working Technology, 2017,46(23): 105-110.

[19]李莎, 曾莉,苗华军,等. 镍基高温合金GH4700的热变形行为及热加工图[J]. 材料热处理学报, 2013, 34(9): 51-56.

Li S, Zeng L, Miao H J, et al. Hot deformation behavior and processing maps of Ni-based superalloy GH4700 [J]. Transactions of Materials and Heat Treatment, 2013, 34(9): 51-56.

[20]李莎, 苗华军,金宪哲,等. 新型镍基高温合金GH4700热变形行为及组织演变研究[J]. 铸造技术, 2013,34(8): 953-957.

Li S, Miao J H, Jin X Z, et al. Research on hot deformation behavior and microstructure evolution of new nickel-based superalloy GH4700[J]. Foundry Technology, 2013,34(8): 953-957.

[21]赵宏禹, 刘荣佩,王长军,等. 9Ni马氏体不锈钢的热变形行为及其能量耗散图[J] . 钢铁,2018,53(9):74-79. 

Zhao H Y,Liu R P,Wang C J,et al. Hot deformation behavior and energy dissipation diagram of 9Ni martensite stainless steel[J]. Iron and Steel,2018,53(9):74-79.

[22]Zhou X, Wang K L, Lu S Q, et al. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy[J]. Journal of Materials Research and Technology,2020,9(3):2652-2661.

[23]Neethu N,Chakravarthy P. Development of processing maps for hot deformation: Algorithm and common errors[J]. Metallurgical and Materials Transactions,2020,51(7):3398-3402.

[24]Deng K, Sun D X, Tang W X, et al. 3D processing map and hot deformation behaviour of a new type Al-Zn-Mg alloy[J]. Philosophical Magazine,2020,100(13):1716-1732.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com