Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation of relationship between structural parameters and mold stress for hot forging mold
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG316
year,vol(issue):pagenumber:2023,48(4):210-217
Abstract:

 In order to reduce the cracking risk of transition fillet of the groove bottom of deep groove forging mold, and provide guidance for the structural design of forging mold, a mold was designed to study the influences of structural parameters (transition fillet radius of groove bottom R, single side height of bridge for flash groove h, inlet fillet radius r, draft angle α) on mold stress (maximum principal stress of mold). Then, four sets of simulation experiments were designed by using the single factor variable method, and a total of twenty-four finite element simulation experiments were carried out. Furthermore, the simulation correctness was verified by comparing the simulation results of forming load with the prediction results of existing studies. The simulation results indicate that σmax (maximum mold stress value) decreases with the increasing of R, and the two show a good linear relationship, that is, R increases by 1 mm, and σmax decreases by about 40 MPa. The overall stress level of mold decreases rapidly with the increasing of h, but the degree of reduction decreases gradually. r has little effect on the mold stress when r changes from 1 mm to 7 mm, and the influence mechanism of α on the mold stress is more complicated. In general, increasing α induces a slight increase in the mold stress.

Funds:
国家自然科学基金资助项目(51775068);中央高校基本科研(2022CDJXY-010)
AuthorIntro:
作者简介:廖海龙(1997-),男,硕士研究生 E-mail:lhl1243118402@163.com 通信作者:夏玉峰(1972-),男,博士,教授 E-mail:yufengxia@cqu.edu.cn
Reference:

 
[1]顾冬冬, 张红梅, 陈洪宇,等. 航空航天高性能金属材料构件激光增材制造
[J]. 中国激光, 2020, 47(5): 32-55.


Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components
[J]. Chinese Journal of Lasers, 2020, 47(5): 32-55.


[2]Emamverdian A A, Sun Y, Cao C, et al. Current failure mechanisms and treatment methods of hot forging tools (dies)-A review
[J]. Engineering Failure Analysis, 2021, 129: 105678.


[3]纪小虎, 李萍,时迎宾,等. TA15钛合金等温多向锻造晶粒细化机理与力学性能
[J]. 中国有色金属学报, 2019, 29(11): 2515-2523.

Ji X H, Li P, Shi Y B, et al. Grain refinement mechanism and mechanical properties of TA15 alloy during multi-directional isothermal forging
[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11): 2515-2523.


[4]Hibbe P, Wolfgarten M, Hirt G. Investigation of void closure in open-die forging considering changing load directions
[J]. Prod.Eng.-Res.Dev., 2019, 13(6): 703-711.


[5]Wang Z P, Wang J P, Huang C W, et al. Cracking failure analysis of steel piston forging die
[J]. Engineering Failure Analysis, 2022, 138: 106291.


[6]Chang K H, Shih C W, Tzou G Y . Defect improvement of extrusion dies using combination of fem stress analysis with the taguchi method
[J]. Transactions of the Canadian Society for Mechanical Engineering, 2015, 39(3): 729-738.


[7]Dehghani K, Jafari A. Finite element stress analysis of forging dies to improve their fatigue life
[J]. Materials Science-Poland, 2010, 28(1): 139-152.


[8]Vazquez V, Hannan D, Altan T. Tool life in cold forging-An example of design improvement to increase service life
[J]. Journal of Materials Processing Technology, 2000, 98(1): 90-96.


[9]Dalbosco M, da Silva Lopes G, Schmitt P D, et al. Improving fatigue life of cold forging dies by finite element analysis: A case study
[J]. Journal of Manufacturing Processes, 2021, 64: 349-355.


[10]Abishkenov M, Ashkeyev Z, Mashekov S, et al. Investigation of the stress-strain state of balls under deformation in a closed die
[J]. Metalurgija, 2020, 59(4): 559-562.


[11]Tzou G Y, Lin S H, Chen D C, et al. Die stress analysis and improvement of the welding valve fastener in multi-stage forging
[J]. Transactions of the Canadian Society for Mechanical Engineering, 2019, 44(2): 263-271.


[12]沈力. 基于损伤力学的锤锻模疲劳断裂分析及再制造工艺研究
[D]. 重庆:重庆大学,2016.

Shen L. Analysis of Hammer Forging Die Fatigue Fracture and Research of the Remanufacturing Process Based on Damage Mechanics
[D]. Chongqing: Chongqing University, 2016.


[13]张月婷. 某耳轴锤上模锻模具断裂及裂纹扩展研究
[D]. 重庆:重庆大学,2015.

Zhang Y T. A Trunnion of Hammer Forging on Fracture and Crack Propagation Research
[D]. Chongqing: Chongqing University, 2015.


[14]熊逸博. 航空发动机机匣锻造工艺优化及模具梯度堆焊再制造研究
[D]. 重庆:重庆大学,2018.

Xiong Y B. Research on Optimization of Forging Process for Aero-Engine Casing and Die Remanufacturing by Gradient Surfacing Welding
[D]. Chongqing: Chongqing University, 2018.


[15]李向阳. 游艇转向臂锻造工艺优化及模具寿命提升
[D]. 镇江:江苏大学,2020.

Li X Y.Optimization of Forging Process for Steering Arm of Yacht and Improvement for the Die Life
[D]. Zhenjiang: Jiangsu University, 2020.


[16]代伟, 易幼平, 李蓬川,等. 300M超高强钢起落架外筒模锻件锤锻工艺
[J]. 宇航材料工艺, 2012, 42(6): 100-104.

Dai W, Yi Y P, Li P C, et al. Hammer forging process for 300M ultra high strength steel die forging of landing gear cylinder
[J]. Aerospace Materials & Technology, 2012, 42(6): 100-104.


[17]黄顺喆, 厉勇,王春旭,等. 300M钢的热变形行为研究
[J]. 热加工工艺, 2010, 39(20): 25-28.

Huang S Z, Li Y, Wang C X, et al. Investigation on hot deformation behavior of 300M steel
[J]. Hot Working Technology, 2010, 39(20): 25-28.


[18]朱宗元. 我国热作模具钢性能数据集(续Ⅰ)
[J]. 机械工程材料, 2001, 25(2): 40-42.

Zhu Z Y. Property data collection of common hot working die steels used in China (Continued Ⅰ)
[J]. Materials For Mechanical Engineering, 2001, 25(2): 40-42.


[19]Liu Z, Li L, Yi J, et al. Influence of extrusion speed on the seam weld quality in the porthole die extrusion of AZ31 magnesium alloy tube
[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1): 1039-1052.


[20]Li D, Jing Z, Yao M, et al. Simulation research on effect of extrusion parameters on welding pressure during porthole extrusion process of AZ91 pipe through angle welding chamber die
[J]. Rare Metal Materials and Engineering, 2021, 50(8): 2752-2759.


[21]Abd El Aal M I. 3D FEM simulations and experimental validation of plastic deformation of pure aluminum deformed by ECAP and combination of ECAP and direct extrusion
[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1338-1352.


[22]赵乙丞, 朱广伟,齐鹏,等. 基于圆环压缩和挤压-模拟法的Zr-4合金塑性成形摩擦因子测定
[J]. 工程科学学报, 2020, 42(2): 209-215.

Zhao Y C, Zhu G Y, Qi P, et al. Measurement of friction factor in plastic forming of Zr-4 alloy based on ring compression and extrusion-simulation
[J]. Chinese Journal of Engineering, 2020, 42(2): 209-215.


[23]俞汉清, 陈金德. 金属塑性成形原理
[M]. 北京:机械工业出版社, 1999.

Yu H Q, Chen J D. Principle of Metal Plastic Forming
[M]. Beijing: China Machine Press, 1999.


[24]徐芝纶. 弹性力学(上册)
[M]. 第4版. 北京:高等教育出版社, 2006.

Xu Z L. Elastic Mechanics:Volume I
[M]. 4nd Eidition. Beijing: Higher Education Press, 2016.


[25]姚泽坤. 锻造工艺学与模具设计
[M]. 西安:西北工业大学出版社, 2007.

Yao Z K. Forging Technology and Die Design
[M]. Xi′an: Northwestern Polytechnic University Press,2007.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com