Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior on aluminium foam sandwich preformed blank
Authors: Xu Wenbin1  Hu Zhili1 2 3  Pang Qiu4 
Unit: 1. Hubei Longzhong Laboratory  2. Hubei Key Laboratory of Advanced Technology of Automobile Components  Wuhan University of Technology  3. Hubei Research Center for New Energy & Intelligent Connected Vehicle  Wuhan University of Technology    4. School of Mechanical and Electrical Engineering Wuhan Donghu University 
KeyWords: aluminum foam sandwich preformed blank  friction stir welding  powder distribution  thermal deformation behavior  forming property 
ClassificationCode:TB34
year,vol(issue):pagenumber:2023,48(5):44-50
Abstract:

 The aluminum foam sandwich preformed blank was produced by friction stir welding process, and its thermal deformation behavior was studied. The results find that when the welding speed is 2000 r·min-1, the welding feed rate is 50 mm·min-1 and the pressing down of shoulder is 0.15 mm, aluminum foam sandwich preformed blank with uniform powder mix and good denseness can be formed. In the deformation temperature range of 350-475 ℃ and the deformation rate range of 0.01-1 s-1, as the deformation temperature rises, the elongation of aluminum foam sandwich preformed blank increases first and then decreases, reaching the highest at 400 ℃, and the peak stress decreases with the increasing of deformation temperature. As the deformation rate increases, the elongation of aluminum foam sandwich preformed blank continues to decrease, while the peak stress increases. In the deformation temperature range of 350-475 ℃, a Fields-Backofen model is established to describe the thermal deformation behavior of aluminum foam sandwich preformed blank, which provides a theoretical and technical basis for the preparation and application of aluminum foam sandwich components with complex curved surfaces.

Funds:
湖北隆中实验室自主创新研究项目(2022ZZ-04);湖北省自然科学基金资助项目(2021CFB523);湖北省重点研发计划项目(2021BAA200);湖北省科技重大项目(2022AAA001)
AuthorIntro:
作者简介:徐文斌(1997-),男,硕士研究生 ,E-mail:634269813@qq.com;通信作者:庞秋(1979-),女,博士,硕士生导师,副教授,E-mail:pqiuhit@126.com
Reference:

[1] Patel P, Bhingole P P, Makwaba D. Manufacturing, characterization and applications of lightweight metallic foams for structural applications: Review[J]. Materials Today: Proceedings, 2018, 5(9): 20391-20402.


[2] Xu F X, Zhang X, Zhang H. A review on functionally graded structures and materials for energy absorption[J]. Engineering Structures, 2018, 171: 309-325.


[3] Bakir M, Bahceci E, Meyer J L, et al. Aromatic thermosetting copolyester foam core and aluminum foam face three-layer sandwich composite for impact energy absorption[J]. Materials Letters, 2017, 196: 288-291.


[4] Kweon J H, Jung J W, Kim T H, et al. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding[J]. Composite Structures, 2006, 75(1-4): 192-198.


[5]宋宇峰,肖来荣,曾德露,等.泡沫铝三明治结构材料的制备及其组织性能分析[J].矿冶工程,201434(3)119-123.


Song Y F, Xiao L R, Zeng D L, et al. Preparation and structure property analysis of aluminum foam sandwich structure material[J]. Mining and Metallugical Engineeing, 2014, 34(3): 119-123.


[6] Banhart J. Light-metal foams-history of innovation and technological challenges[J]. Advanced Engineering Materials, 2013, 15(3): 82-111.


[7] Ma Z Y. Friction stir processing technology: A review[J]. Metallurgical and Materials Transactions A, 2008, 39 (3): 642-658.


[8] Hangai Y, Utsunomiya T. Fabrication of porous aluminum by friction stir processing[J]. Metallurgical and Materials Transactions A, 2009, 40 (2): 275-277.


[9] Utsunomiya T, Ishii N, Hangai Y, et al. Manufacturing of sandwich panel with porous aluminum/dense steel plate by friction stir processing route[J]. Transactions of the Japan Society of Mechanical Engineers, 2011, 77(779): 1013-1016.


[10] Su X X, Huang P, Feng Z H, et al. Study on aluminum foam sandwich welding by friction stir welding technology[J]. Materials Letters, 2021, 304: 130605


[11]吴正健,庞秋,胡志力.搅拌摩擦焊制备7075铝合金泡沫夹芯板塑性变形及发泡工艺研究[J].精密成形工程,202214(4)69-77.


Wu Z J, Pang Q, Hu Z L. Plastic deformation and foaming process of 7075 aluminum alloy foam sandwich plate prepared by friction stir welding[J]. Journal of Netshape Forming Engineering, 2022, 14(4): 69-77.


[12]万心勇. 2024/7075异质铝合金车身构件拼焊成形组织性能与变形规律[D].武汉:武汉理工大学,2019.


Wan X Y. Research on Microstructure and Deformation Behavior of 2024/7075 Dissimilar Aluminum Alloy FSW-TWB for Vehicle Body [D]. WuhanWuhan University of Technology, 2019.


[13]宋锦书,金恋.工艺参数对搅拌摩擦焊制备泡沫铝的影响规律研究[J].热加工工艺,2022,51(5):27-31.


Song J S, Jin L. Effect of process parameters on aluminum foam prepared by friction stir welding[J]. Hot Working Technology, 2022, 51(5):27-31.


[14] Khodashenas H, Mirzadeh H, Malekan M, et al. Constitutive modeling of flow stress during hot deformation of Sn-Al-Zn-Cu-Mg multi-principal-element alloy[J]. Vacuum, 2019170:108970.


[15] He Z B, Wang Z B, Lin Y L, et al. Hot deformation behavior of a 2024 aluminum alloy sheet and its modeling by Fields-Backofen model considering strain rate evolution[J]. Metals, 2019, 9(2):243.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com