Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on controllable internal pressure push bending for tube with long straight section and small bending radius
Authors: Xu Yong1 2  He Tengfei1  Xie Wenlong2  Zhang Shihong2  Huang Xinyue3  Wang Shengcheng3 
Unit: 1. College of Metallurgy and Energy  North China University of Science and Technology  2. China Shichangxu Innovation Center for Advanced Materials Institute of Metal Research Chinese Academy of Sciences 3. Shenyang Duoyuan Mechanical & Electrical Equipment Co. Ltd. 
KeyWords: polyurethane filler  small bending radius  push bending  controllable internal pressure reverse thrusts 
ClassificationCode:TG376
year,vol(issue):pagenumber:2023,48(5):87-94
Abstract:

 In view of the defects such as instability, wrinkling and cross-sectional distortion that were easily produced during push-bending of tubes with long straight section and small bending radius, 5B02 aluminum alloy tubes with the specification of Φ25 mm×1 mm and the bending radius of 1D were formed by internal expansion and cold push-bending process with polyurethane filler, and the internal pressure distribution of polyurethane filler during the push-bending process was studied by finite element simulation. Then, by analyzing reverse thrust, polyurethane filler parameters and internal friction, the internal pressure distribution of polyurethane filler was obtained, and the relationship between internal pressure and defects was determined to realize the controllable internal pressure. The research results show that when the reverse thrust is increased to 13 MPa, the tube is not well formed. When the reverse thrust is reduced to 5 MPa, the internal pressure of supporting elbow is insufficient, resulting in instability and port distortion of elbow. When the hardness of polyurethane filler is insufficient, the cross-sectional distortion of elbow is aggravated. The change of friction coefficient between polyurethane filler and tube affects the internal pressure provided by the polyurethane filler, and when the friction coefficient is small, it leads to insufficient forming and causes instability and wrinkle of tube. Thus, the feasibility of controllable internal pressure push bending is verified by the above study.

Funds:
沈阳市科技计划项目(22-301-1-10);中国科学院青年创新促进会专项(2019195)
AuthorIntro:
作者简介:徐勇(1983-),男,博士,研究员,E-mail:yxu@imr.ac.cn
Reference:

 [1]权晋花.薄壁小半径弯管与中压内胀成形工艺[J]. 锻压装备与制造技术,2009,44 (3): 103-105.


Quan J H.Thin-walled tube with small radius and internal mediumpressure forming technique[J]. China Metalforming Equipment & Manufacturing Technology,2009,44 (3): 103-105.

[2]冀克明,曾婧,段振鑫,等.超细晶钛铝基合金的高温压缩性能研究[J].稀有金属,2022,46(5):572-580.

Ji K M, Zeng J, Duan Z X,et al. High temperature compression properties of ultrafine TiAl-based alloy[J]. Chinese Journal of Rare Metals, 2022,46(5):572-580.

[3]苑潇逸,宁江利,陶世洁,等.表面纳米化对挤压时效态Mg-Gd-Y-Zr合金室温拉伸性能的影响[J].稀有金属,2022,46(12):1546-1555. 

Yuan X Y,Ning J L,Tao S J,et al. Room-temperature tensile properties of extruded+peak aged Mg-Gd-Y-Zr alloy modified by surface nanocrystallization[J]. Chinese Journal of Rare Metals, 2022, 46(12):1546-1555.

[4]葛蒙召,王璋,高铁军,等. 支叉管零件充液成形工艺[J]. 锻压技术,2022,47(1):81-90.

Ge M Z,Wang Z,Gao T J,et al. Hydroforming process of fork tube parts[J]. Forging & Stamping Technology, 2022,47(1):81-90.

[5]周永新,冯苏乐,杨学勤,等. 大径厚比薄壁变曲率构件充液拉深成形技术[J]. 锻压技术,2022,47(4):126-133.

Zhou Y X,Feng S L,Yang X Q,et al. Hydro-drawing technology for thin-walled variable curvature part with large diameter to thickness ratio[J]. Forging & Stamping Technology,2022,47(4):126-133.

[6]黄遐,曾元松,张新华,等.不锈钢小弯曲半径管内压推弯成形过程有限元模拟[J]. 航空制造技术,2005,(10):74-77,97.

Huang X,Zeng Y S,Zhang X H,et al. FEM simulation pressure bending forming process for stainless steel tubewith small bend radius[J]. Aeronautical Manufacturing Technology,2005,(10): 74-77,97.

[7]苟毓俊,双远华,周研,等. 0Cr18Ni9 管材大曲率无芯弯曲横截面畸变研究[J]. 塑性工程学报,2019,26 (1):103-108.

Gou Y J,Shuang Y H,Zhou Y,et al. Research on cross section distortion of 0Cr18Ni9 tube in no-mandrel bending with large curvature[J]. Journal of Plasticity Engineering,2019,26 (1):103-108.

[8]张云峦,吴天华,张羽,等. 聚氨酯橡胶硬度对薄壁三通管内高压成形的影响[J]. 锻压技术,2022,47(1):91-97.

Zhang Y L,Wu T H,Zhang Y,et al. Influence of polyurethane rubber hardness on internal high pressure forming for thin-walled T-tube[J]. Forging & Stamping Technology, 2022,47(1):91-97.

[9]Liu H, Zhang S H, Song H W, et al. 3D FEM-DEM coupling analysis for granular-media-based thin-wall elbow tube push-bending process[J]. International Journal of Material Forming, 2019,12(6): 985-994.

[10]韩兆建. 金属薄壁管材充液弯曲工艺研究[D]. 秦皇岛:燕山大学, 2021.

Han Z J. Research on Liquid-filled Bending Process of Metal Thin-walled Pipes[D]. Qinhuangdao: Yanshan University, 2021.

[11]Xiao J, Xu X F, Zuo D W, et al. Effect of contact states in the tube on the push bending with low-melting-point alloy as filling medium[J]. The International Journal of Advanced Manufacturing Technology, 2022,123(11-12): 4277-4291.

[12]Jiang W H, Xie W L, Song H W, et al. A modified thin-walled tube push-bending process with polyurethane mandrel[J]. The International Journal of Advanced Manufacturing Technology, 2020,106(5): 2509-2521.

[13]Xu X F, Fan Y B, Wu Y W, et al. A novel differential lubrication method for push-bending of L-shaped thin-walled tube with 1D bending radius[J]. International Journal of Material Forming, 2021, 14(4):691-701.

[14]Zhang X, Zhao C C, Du B, et al. Research on hydraulic push-pull bending process of ultra-thin-walled tubes[J]. Metals, 2021,11(12): 932-1932.

[15]Xie W L, Jiang W H, Wu Y F, et al. Process parameter optimization for thin-walled tube push-bending using response surface methodology[J]. The International Journal of Advanced Manufacturing Technology,2021,118(11-12): 3833-3847.

[16]Song H W, Xie W L, Zhang S H, et al. Granular media filler assisted push bending method of thin-walled tubes with small bending radius[J]. International Journal of Mechanical Sciences, 2021, 198(1-3):106365.

[17]杨东,徐雪峰,范玉斌,等.大径厚比不锈钢弯管内胀冷推弯成形数值模拟及实验研究[J].锻压技术,2022,47(10):154-162.

Yang D, Xu X F,Fu Y B, et al. Numerical simulation and experimental study on internal expansion cold push bending for stainless steel bent tube with large diameter to thickness ratio [J]. Forging & Stamping Technology, 2022,47(10):154-162.

[18]方继钊, 郭伟, 陈根发, 等. GH4169高温合金薄壁管1D弯曲半径冷胀推弯成形研究[J]. 航空制造技术, 2022, 65(10):75-81.

Fang J Z, Guo W, Chen G F, et al. Study on push-bending forming of GH4169 superalloy thin-walled tube with small bending radius[J]. Aeronautical Manufacturing Technology, 2022, 65(10): 75-81.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com