Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Forming process on 2219 aging strengthened aluminum alloy tunnel tube
Authors: Zhu Shiqiang1 2  Wang Yongming2  Shen Ruxun2  Li Jie2  Wang Kehuan1  Ma Zhe2  Yang Di2   Zhou Changle2  Tian Jianqiao2 Liu Xianglong2 
Unit: 1.School of Materials Science and Engineering Harbin Institute of Technology  2.Capital Aerospace Machinery Corporation Limited 
KeyWords: spinning  internal high pressure forming  2219 aluminum alloy  tunnel tube thining rate 
ClassificationCode:TG386
year,vol(issue):pagenumber:2023,48(5):111-116
Abstract:

 For aging strengthened 2219 aluminum alloy tunnel tube, a process plan for spinning blank first and then internal high pressure forming was proposed. Then, the influences of heat treatment state, thinning rate and feeding ratio of spinning wheel etc. on the spinning forming of tube blank were studied by process experiments, and the spinning process parameters were optimized. Furthermore, the deformation characteristics of two internal high pressure forming schemes were analyzed by finite element method, and a reasonable internal high pressure forming process flow was developed. The results show that the plasticity of tube blank in the initial state is poor, and the ultimate deformation of 2219 aluminum alloy tube blank is small. After annealing or quenching treatment, its ultimate deformation is greatly increased. Finally, the spinning of Φ112 mm thin-walled tube is achieved, and its thickness is 1.51-1.58 mm and the outer diameter is Φ115.2-Φ115.6 mm. When the internal high pressure forming pressure is 65 MPa, a qualified tunnel tube is formed, and the maximum thinning rate of part is 7.74%. Thus, the mechanical properties of aging strengthened 2219 aluminum alloy tunnel tube are significantly improved compared with the traditional tunnel tube.

Funds:
AuthorIntro:
作者简介:祝世强(1978-),男,硕士,高级工程师,E-mail:hitzsq@126.com,通信作者:王永铭(1982-),男,博士,高级工程师,E-mail:wangyongming211@163.com
Reference:

[1]王国辉, 曾杜娟, 刘观日, 等. 中国下一代运载火箭结构技术发展方向与关键技术分析[J]. 宇航总体技术,2021, 5(5):1-11.


Wang G H, Zeng D J, Liu G R, et al. Development direction and key technology analysis for China′s next generation launch vehicles structure [J]. Astronautical Systems Engineering Technology, 2021, 5(5):1-11.

[2]冯苏乐, 赵毕艳, 罗益民, 等. 液力成形在运载火箭增压输送系统中的应用[J]. 航天制造技术,2014, (5):38-42.

Feng S L, Zhao B Y, Luo Y M, et al. Hydroforming technology application in pressure delivery system of carrier rocket [J]. Aerospace Manufacturing Technology, 2014, (5):38-42.

[3]李念奎, 凌杲, 聂波, 等. 铝合金材料及其热处理技术[M]. 北京: 冶金工业出版社, 2012.

Li N K, Ling G, Nie B, et al. Aluminum Alloy Materials and Its Heat Treatment Technology [M]. Beijing: Metallurgical Industry Press, 2012.

[4]蒋靖宇,赖松柏,路丽英,等. 5XXX系铝镁合金的研究进展[J]. 载人航天,2019,25(3):411-418. 

Jiang J Y, Lai S B, Lu L Y, et al. Research progress of 5XXX series Al-Mg alloy [J]. Manned Spaceflight,2019,25(3):411-418.

[5]刘观日, 吴迪, 姚重阳, 等. 航天运载器结构先进材料及工艺技术应用与发展展望[J]. 宇航材料工艺,2021,51(4):1-9.

Liu G R, Wu D, Yao C Y, et al. Application and development of advanced materials and processing technology in aerospace vehicle structure [J]. Aerospace Materials & Technology, 2021,51(4):1-9.

[6]刘利明, 李泽琛, 李倩云, 等. 浅谈贮箱材料的选择[J]. 中国新技术新产品, 2020, (4):80-81.

Liu L M, Li Z C, Li Q Y, et al. Selection of tank materials [J]. New Technology & New Products of China, 2020, (4):80-81.

[7]苑世剑. 现代液压成形技术[M].2版. 北京:国防工业出版社,2016.

Yuan S J. Modern Hydroforming Technology [M]. 2nd Edition. Beijing: National Defense Industry Press, 2016.

[8]苑世剑, 何祝斌, 刘钢, 等. 内高压成形理论与技术的新进展[J]. 中国有色金属学报, 2011, 21(10):2523-2533.

Yuan S J, He Z B, Liu G, et al. New developments in theory and processes of internal high pressure forming [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2523-2533.

[9]王成和, 刘克璋, 周路. 旋压技术[M]. 福州:福建科学技术出版社,2017.

Wang C H, Liu K Z, Zhou L. Spinning Technology [M]. Fuzhou:Fujian Science and Technology Publishing House, 2017.

[10]郭亚明, 徐恒秋, 薛秀琴,等. 2A12铝合金薄壁壳体强力旋压成形工艺[J]. 锻压技术, 2021, 46(5):143-150.

Guo Y M, Xu H Q, Xue X Q, et al. Power spinning process of thin-walled shell parts for 2A12 aluminum alloy [J]. Forging & Stamping Technology, 2021, 46(5): 143-150.

[11]仲昕岳, 杜尚军, 李志远,等. 旋压成形过程缺陷控制方法及应用[J]. 精密成形工程, 2020, 12(6):169-174.

Zhong X Y, Du S J, Li Z Y, et al. Defect control method and application of spinning forming[J]. Journal of Netshape Forming Engineering, 2020, 12(6):169-174.

[12]滕焕波,冯再新,张治民. 旋压产品中常见缺陷及对策[J]. 锻压装备与制造技术,2007,42(1):67-70. 

Teng H B, Feng Z X, Zhang Z M. The familiar defect of spinning product and counterplans [J]. China Metal Forming Equipment & Manufacturing Technology, 2007,42(1):67-70.

[13]GB/T 3880.2—2012,一般工业用铝及铝合金板、带材第2部分:力学性能[S].

GB/T 3880.2—2012, Wrought aluminium and aluminium alloy plates,sheets and strips for general engineering—Part 2: Mechanical properties [S].
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com