Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Forming laws of T-shaped tube under incremental impact hydraulic loads
Authors: Zhao Xinniu1  Liu Jianwei1 2  Zhang Wenxiu1  Meng Zhenpeng1 
Unit: 1.School of Mechanical and Electrical Engineering Guilin University of Electronic Technology  2.National Demonstration Center for Experimental Education of Mechanical and Electrical Engineering Training  Guilin University of  Electronic Technology 
KeyWords: T-shaped tube  incremental impact hydraulic bulging  initial internal pressure  feeding amount height of branch tube 
ClassificationCode:TG394
year,vol(issue):pagenumber:2023,48(5):130-136
Abstract:

 In order to further improve the formability of tube blank and improve the problem of traditional hydraulic bulging technology relying on high pressure source, a incremental impact hydraulic bulging method for multi-pass tube was proposed. For T2 red copper T-shaped tube, the experimental research on incremental impact hydraulic bulging was carried out by the designed bulging device, and by comparing the results of one-pass impact hydraulic bulging, two-pass and three-pass incremental impact hydraulic bulging  under different hydraulic loads, the influences of initial internal pressure, feeding amount and incremental pass on the height, wall thickness distribution and top fillet radius of branch tube for T-shaped tube were analyzed. The research results show that this method can form T-shaped tubes with good quality. The initial internal pressure has a great influence on the top fillet radius and side wall fitting of branch tube for T-shaped tube. The forming quality of T-shaped tube is the best under the three-pass incremental impact hydraulic loads with the initial internal pressure for each pass of 10, 30 and 32 MPa and the feeding amounts of 3, 3 and 15 mm, respectively.

Funds:
国家自然科学基金资助项目(52265044);广西自然科学基金资助项目(2022GXNSFAA035586);广西高校中青年教师科研基础能力提升计划(2021KY0201);桂林电子科技大学研究生教育创新计划项目(2023YCXS005)
AuthorIntro:
作者简介:赵鑫牛(1997-),男,硕士研究生,E-mail:zhao_xinniu@163.com;通信作者:刘建伟(1978-),男,博士,教授,E-mail:liujianwei78988@163.com
Reference:

[1]郭训忠, 陶杰, 王辉. 航空导管先进成形技术的研究进展[J]. 南京航空航天大学学报, 2020, 52(1): 12-23.


Guo X Z, Tao J, Wang H. Research progress on advanced forming technology for aviation tube[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1): 12-23.

[2]苑世剑, 何祝斌, 刘钢. 内高压成形理论与技术的新进展[J]. 中国有色金属学报, 2011, 21(10): 2523-2533.

Yuan S J, He Z B, Liu G. New developments in theory and processes of internal high pressure forming[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2523-2533.

[3]徐勇, 李明, 夏亮亮, 等. 异形排气管多向局部加载液力成形工艺[J]. 中国机械工程, 2020, 31(22): 2763-2771.

 Xu Y, Li M, Xia L L, et al. Hydro-mechanical forming process combined with multi-directional local loading for special-shaped exhaust pipes[J]. China Mechanical Engineering, 2020, 31(22): 2763-2771.

[4]Liu G, Peng J Y, Wang X S, et al. Effects of preform on thickness distribution of hydroformed Y-shaped tube[J]. Advanced Materials Research, 2011, 189-193: 2796-2800.

[5]姬增利, 罗云华, 金俊松. Y型三通管充液挤压成形的数值模拟[J]. 热加工工艺, 2022, 51(5): 89-93.

 Ji Z L, Luo Y H, Jin J S. Numerical simulation on hydro-extruding forming of Y-shaped three-way tube[J]. Hot Working Technology, 2022, 51(5): 89-93.

[6]齐艳阳, 刘江林, 王涛, 等. 基于FEM分析轧制预变形对AZ31B镁合金热轧板材边部损伤的影响规律[J]. 稀有金属, 2022, 46(7): 873-881.

Qi Y Y, Liu J L, Wang T,et al. Edge damage of hot rolled AZ31B magnesium alloy sheets with pre-rolling based on FEM[J]. Chinese Journal of Rare Metals, 2022, 46(7): 873-881.

[7]Cui X L, Teng B G, Yuan S J. Hydroforming process of complex T-shaped tubular parts of nickel-based superalloy[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 32: 476-490.

[8]Lang L H, Wang S H, Yang C L.Investigation on the innovative impact hydroforming technology[A]. Proceedings of the 11th International Conference on Numerical Methods in Industrial Forming Processes[C]. Shenyang, 2013.

[9]Liu J W, Yao X Q, Li Y H, et al. Investigation of the generation mechanism of the internal pressure of metal thin-walled tubes based on liquid impact forming[J]. International Journal of Advanced Manufacturing Technology, 2019, 105(7-8): 3427-3436.

[10]Yao X Q, Liu J W, Liang H P, et al. Investigation of forming optimization of composite tubes based on liquid impact forming[J]. International Journal of Advanced Manufacturing Technology, 2021, 116(3-4): 1089-1102.

[11]朱书建, 李健, 王荣耀, 等. 基于响应面法的T型三通管内高压成形仿真与优化[J]. 热加工工艺, 2022, 51(9): 95-100.

 Zhu S J, Li J, Wang R Y, et al. Simulation and optimization of T-shaped tube internal high pressure forming based on response surface method[J]. Hot Working Technology, 2022, 51(9): 95-100.

[12]张坤岩, 杨连发, 陈占斌, 等. 基于K-means聚类算法的比例加载路径的优化[J]. 锻压技术, 2021, 46(11): 183-189.

Zhang K Y, Yang L F, Chen Z B, et al. Optimization on proportional loading path based on K-means clustering algorithm[J]. Forging & Stamping Technology, 2021, 46(11): 183-189.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com