Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Gradient ultra-low temperature deep drawing law of 2219 aluminum alloy spherical shell with differential thickness
Authors: Fan Xiaobo1 Liu Yang1 Wu Fangxing1 Yuan Shijian1 2 
Unit: 1. School of Mechanical Engineering  Dalian University of Technology  2.School of Materials Science and Engineering  Harbin Institute of Technology 
KeyWords: aluminum alloy  differential thickness sheet  gradient ultra-low temperature deep drawing  formability  deformation uniformity 
ClassificationCode:TG386
year,vol(issue):pagenumber:2023,48(5):155-161
Abstract:

 For the problem of cracking due to concentrated deformation in the thin-thickness transition zone of aluminum alloy spherical shell with differential thickness, a novel method of gradient ultra-low temperature deep drawing for aluminum alloy spherical shell with differential thickness was proposed by utilizing the double-increase effect of the significant increase in the elongation and hardening index of aluminum alloy under ultra-low temperature condition, and the 2219 aluminum alloy spherical curved surface parts with differential thickness and the diameter of Φ200 mm under the gradient ultra-low temperature condition was trial-produced by ultra-low temperature deep drawing process device. Then, combined with numerical simulation, the gradient ultra-low temperature deep drawing law of spherical shell with differential thickness was analyzed, and the deformation coordination mechanism in the thin-thickness transition zone was revealed. The results indicate that the high hardening capacity at ultra-low temperature can transfer the concentrated deformation in the thin-thickness transition zone, and has sufficient plastic deformation capacity to withstand the increased deformation in the thin zone caused by the constrant in the thick zone. Under the gradient ultra-low temperature, the formability of differential thickness sheet with a thickness ratio of 2.0 is significantly improved, which is 76.4% higher than that at normal temperature. Thus, the differential thickness spherical shell obtained by gradient ultra-low temperature forming has great potential, which can provides a new way for the forming of large differential thickness thin-walled curved surface parts.

Funds:
国家重点研发计划项目(2019YFA0708804);中央高校基本科研业务费专项资金资助(DUT20ZD101)
AuthorIntro:
作者简介:凡晓波(1987-),男,博士,副研究员,E-mail:xbfan@dlut.edu.cn
Reference:

[1]徐永超,韩思雨,刘胜京. 液室压力加载路径对5A06铝合金锥形件充液拉深成形的影响[J].锻压技术,2022,47(12):38-43.


Xu Y C, Han S Y, Liu S J. The influence of liquid chamber pressure loading path on the liquid filled deep drawing forming of 5A06 aluminum alloy conical parts [J]. Forging & Stamping Technology, 2022, 47 (12): 38-43.

[2]张洪瑞,詹梅,郑泽邦,等. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J].机械工程学报,2022,58(20):166-185.

Zhang H R, Zhan M, Zheng Z B, et al. Development and challenge of forming technology for aerospace large thin-wall rotary surface components [J]. Journal of Mechanical Engineering, 2022, 58(20): 166-185.

[3]Yuan S J. Research progress of fluid pressure forming theory and technology for thin-wall components with complex surfaces [J]. Engineering, 2021, 7(3): 189-206.

[4]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components[J]. International Journal of Extreme Manufacturing, 2019, 1(2): 022002.

[5]Kleiner M,Chatti S, Klaus A. Metal forming techniques for lightweight construction[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 2-7.

[6]Urban M, Krahn M, Hirt G,et al. Numerical research and optimisation of high pressure sheet metal forming of tailor rolled blanks[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 360-363.

[7]张思佳,胡贤磊,刘相华. 轧制差厚板方盒件拉深成形的试验与数值模拟[J].东北大学学报:自然科学版,2022,43(6):801-808. 

Zhang S J, Hu X L, Liu X H. Experimental and numerical simulation of deep drawing of rolled square box with differential thickness [J]. Journal of Northeastern University: Natural Science Edition, 2022, 43(6): 801-808.

[8]张华伟,王永喆,吴佳璐. 基于灰色关联分析的轧制差厚板盒形件充液拉深成形工艺参数多目标优化[J].精密成形工程,2023,15(2):180-187. 

Zhang H W, Wang Y Z, Wu J L. Multi objective optimization of process parameters for liquid filled deep drawing of rolling thick plate box shaped parts based on grey correlation analysis [J]. Journal of Netshape Forming Engineering, 2023, 15 (2): 180-187.

[9]凡晓波,王旭刚,陈险烁,等. 铝合金管材超低温介质压力胀形行为[J].锻压技术,2021,46(4):1-6. 

Fan X B, Wang X G, Chen X S, et al. Pressure bulging behavior of aluminum alloy pipe under ultra-low temperature medium [J]. Forging & Stamping Technology, 2021, 46(4): 1-6.

[10]凡晓波,洪吉庆,赖小明,等. 铝锂合金曲面件超低温成形工艺[J].宇航材料工艺,2021,51(4):126-130.

Fan X B, Hong J Q, Lai X M, et al. Ultra-low temperature forming technology of Al-Li alloy curved parts [J]. Aerospace Materials & Technology, 2021, 51(4):126-130.

[11]Fan X B, Yuan S J. Innovation for forming aluminum alloy thin shells at ultra-low temperature by the dual enhancement effect[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 103-107.

[12]Fan X B, Chen X S, Yuan S J. Novel forming process for aluminum alloy thin shells at ultra-low temperature gradient[J]. International Journal of Machine Tools and Manufacture, 2023, 185: 103992.

[13]Gao Y R, Li H X, Zhao D Y, et al. Cryogenic friction behavior of aluminum alloys sheets under dry contact condition[J]. Tribology International, 2023, 180: 108227.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com