Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Control and optimization of wrinkling during robotic bending for thin-walled aluminum alloy tube
Authors: Guo Xunzhong1 2 Xu Xiangyong1 Liu Chunmei1 2 Bai Xueshan3 Zhang Kun3 Sun Zhenbiao1 Shen Rantao1 
Unit: 1. State Key Laboratory of Mechanics and Control for Aerospace Structures  Nanjing University of Aeronautics and Astronautics 2. Zhejiang Province Key Laboratory of Aerospace Metal Tube Forming Technology and Equipment  Zhejiang King-Mazon Intelligent Manufacturing Co. Ltd. 3. AVIC Shenyang Aircraft Industial (Group) Co.  Ltd. 
KeyWords: thin-walled aluminum alloy tube robotic bending technology  geometric micro-defect  wrinkling control  response surface optimization 
ClassificationCode:TG391
year,vol(issue):pagenumber:2023,48(5):205-220
Abstract:

 Born in the context of Industry 4.0, robotic tube bending technology is a new and highly flexible tube bending technology, which enables fully automatic and rapid bending of long and thin tubes. While bending and rotating, the robot-controlled end bending device can feed along the direction of the tube axis, which can improve the wall thickness reduction of bent tubes, but on the other hand increase the tendency of wrinkling. Therefore, taking Al6061 aluminum alloy tube as the object, the optimization and control of wrinkling during the thin-walled tube bending by robot were carried out. Selecting the wavelength at the lowest energy consumption during the model calculation after embedding geometric micro-defect, wrinkling morphology and scaling factor that was the most similar to the actual sample as the optimal parameters, the finite element model of robotic tube bending with embedded geometric micro-defects was established. Using the combination method of the finite element model with geometric micro-defect coupling, response surface optimization analysis and forming experiments, a response surface regression prediction model for wrinkling was established. Through the obtained response surface and contour map, the influence laws of process parameter coupling on wrinkling during robotic bending of Al6061 aluminum alloy thin-walled tube was revealed, and the optimal forming process parameters were obtained. And then the reliability of the wrinkling prediction model and the finite element model embedded geometric micro-defects were further validated.

Funds:
国家自然科学基金青年基金(52105362);国家自然科学基金面上基金(52175328);江苏省自然科学基金青年基金(BK20210310)
AuthorIntro:
作者简介:郭训忠(1981-),男,博士,教授,E-mail:guoxunzhong@nuaa.edu.cn;通信作者:刘春梅(1989-),女,博士,讲师,E-mail:liuchunmei@nuaa.edu.cn
Reference:

[1]郭训忠,徐勇,陶杰,等. 金属空心构件先进冷成形技术[M]. 北京:科学出版社, 2019.


Guo X Z,Xu Y,Tao J,et al. Advanced Cold Forming Technology of Metal Hollow Components[M]. Beijing:Science Press, 2019. 

[2]张士宏, 程明, 宋鸿武,等. 航空航天复杂曲面构件精密成形技术的研究进展[J]. 南京航空航天大学学报, 2020,52(1):1-11.

Zhang S H, Cheng M, Song H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020,52(1):1-11.

[3]郭训忠, 陶杰, 王辉. 航空导管先进成形技术的研究进展[J]. 南京航空航天大学学报, 2020,52(1):12-23.

Guo X Z,Tao J,Wang H. Research progress on aadvanced forming technology for aviation tube [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020,52(1):12-23.

[4]Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies [J]. Chinese Journal of Aeronautics, 2012,25(1):1-12.

[5]詹梅, 杨合, 江志强. 管材弯曲成形的国内外研究现状及发展趋势[J]. 机械科学与技术, 2004,(12):1509-1514.

Zhan M, Yang H, Jiang Z Q. State of the art of research on tube bending process[J]. Mechanical Science and Technology, 2004,(12):1509-1514.

[6]Takuya K.Bending device and bending method[P]. US:US09241711,2001-02-13.

[7]Sun Z B, Liu C M, Guo X Z, et al. Forming characteristics of a novel robot-based tube bending process[J]. The International Journal of Advanced Manufacturing Technology, 2022,121(9-10):6685-6702.

[8]Chen J S, E D X, Zhang J W. Effects of process parameters on wrinkling of thin-walled circular tube under rotary draw bending[J]. The International Journal of Advanced Manufacturing Technology, 2013,68(5-8):1505-1516.

[9]Hasanpour K, Barati M, Amini B, et al. The effect of anisotropy on wrinkling of tube under rotary draw bending[J]. Journal of Mechanical Science and Technology, 2013,27(3):783-792.

[10]Cornelissen R, Maljaars J, Hofmeyer H. Buckling and wrinkling of rectangular hollow sections curved in three-point-roll bending[J]. The International Journal of Advanced Manufacturing Technology, 2021,112(7-8):2091-2107.

[11]车移, 詹红, 屈俊岑,等. 基于全量流动理论的管材弯曲过程失稳分析研究[J]. 精密成形工程, 2021,13(3):112-117.

Che Y, Zhan H, Qu J C, et al. Analysis on instability in tube bending process based on total theory of plasticity[J]. Journal of Netshape Forming Engineering, 2021,13(3):112-117.

[12]Limam A, Lee L H, Corona E, et al. Inelastic wrinkling and collapse of tubes under combined bending and internal pressure[J]. International Journal of Mechanical Sciences, 2009,52(5):637-647.

[13]Simonetto E, Ghiotti A, Bruschi S. Dynamic detection of tubes wrinkling in three roll push bending[J]. Procedia Engineering, 2017,207:2316-2321.

[14]鄂大辛, 周大军. 金属管材弯曲理论及成形缺陷分析[M]. 北京: 北京理工大学出版社, 2016.

E D X,Zhou D J. Metal Tube Bending:Theory and Forming Defects Analysis[M]. Beijing: Beijing Institute of Technology Press, 2016.

[15]Donnell L H, Wan C C. Effect of imperfections on buckling of thin cylinders and columns under axial compression[J]. J. Appl. Mech., 1950,17(1):73-83.

[16]刘楠. 复杂边界条件下薄壁件塑性成形失稳起皱预测[D]. 西安:西北工业大学, 2015.

Liu N. Instability and Wrinkling Prediction in Plastic Forming Processes of Thin-walled Parts under Complex Boundary Conditions[D]. Xi′an:Northwestern Polytechnical University, 2015.

[17]赵腾伦. ABAQUS 6.6在机械工程中的应用[M]. 北京:中国水利水电出版社, 2007.

Zhao T L. Application of ABAQUS 6.6 in Mechanical Engineering[M]. Beijing:China Water & Power Press, 2007.

[18]张开铭, 王克鲁, 鲁世强,等. 基于响应面法对S280超高强度不锈钢的热变形行为研究[J/OL].航空学报:1-14[2022-06-21].http://kns.cnki.net/kcms/detail/11.1929.v.20220617. 1545.025.html.

Zhang K M,Wang K L,Lu S Q,et al. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology[J/OL]. Acta Aeronautica et Astronautica Sinica:1-14[2022-06-21].http://kns.cnki.net/kcms/detail/11.1929.v.20220617.1545.025.html.

[19]徐佳俊, 徐雪峰, 范玉斌,等. 基于响应面法的Y型管内高压成形加载路径优化[J]. 塑性工程学报, 2022,29(6):67-75.

Xu J J,Xu X F,Fan Y B,et al. Loading path optimization for internal high-pressure forming of Y-shaped tube based on response surface method [J]. Journal of Plasticity Engineering, 2022,29(6):67-75.

[20]吴永根, 张泽垚, 刘庆涛,等. 运用响应面法的无机聚合物混凝土性能分析[J]. 空军工程大学学报:自然科学版, 2017,18(3):92-98.

Wu Y G,Zhang Z Y,Liu Q T,et al. Study on performance of inorganic polymer concrete basedon response surface methodology[J]. Journal of Air Force Engineering University:Natural Science Edition, 2017,18(3):92-98.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com