Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Modelling and analysis of evolution for deformation and property in elastic-plastic creep ageing of aluminium alloy
Authors: Zhou Wenbin1  Gan Wanni1  Yang Xiaoke2  Yang Liwei3  Yang Bo4  Li Dongsheng1  Li Yong1  
Unit: 1.School of Mechanical Engineering and Automation  Beihang University  2.Aerospace Hiwing (Harbin) Titanium Industry Co.  Ltd.  3.School of Engineering and Materials Science  Queen Mary University of London  4. Shenyang Liming Aero Engine Co.  Ltd.AECC 
KeyWords: aluminium alloy  creep ageing  elastic-plastic loading  constitutive model evolution for deformation and property 
ClassificationCode:TG306
year,vol(issue):pagenumber:2023,48(5):227-235
Abstract:

The traditional creep age forming process is required to extend from elastically loading to elastic-plastically loading for achieving the precise formability and property of large thin-walled structures with complex shapes. To investigate the effect of elastic-plastically loading state on the creep deformation and age hardening of materials and structures, a series of studies were conducted, including the characterisation of stress relaxation ageing, building of cross-scale constitutive model, and the simulation and experimental analysis for creep age forming of typical stiffened panels. The cross-scale material model based on the variation of creep threshold stress, which considers the different initial dislocation characteristis under elastic-plastically loading, can effectively realize the simulation and prediction of the elastic-plastic creep ageing characterisation. The experimental and simulation results of creep age forming for typical stiffened panel structures show that the plastic strain produced in the loading process significantly reduces the springback percentage of specimens. For the specimens with the maximum loading total equivalent strains of 1.62% and 0.46%, the springback percentages are 13.8% and 31.0%, respectively. The yield strength of stiffeners and skin areas of the experimental specimen is improved, and the yield strength of  stiffener is slightly higher than that of skin after forming.

Funds:
国家自然科学基金资助项目(52005020);广东省基础与应用基础研究基金资助项目(2019A1515110851)
AuthorIntro:
作者简介:周文彬(1994-),男,博士,副教授,E-mail:zhouwb@buaa.edu.cn;通信作者:李勇(1989-),男,博士,教授,E-mail:liyong19@buaa.edu.cn
Reference:

[1]王建光,龚集响,李晓凯,等. 大型贮箱壁板蠕变时效成形高效均匀传热模具结构优化[J]. 锻压技术,2022,47(9):196-202.


Wang J G,Gong J X,Li X K,et al. Optimization on die structure with high efficient and uniform heat transfer for creep aging of large tank wall panels[J]. Forging & Stamping Technology, 2022, 47(9): 196-202.

[2]龚习,王恒强,付敏敏,等. 航空航天用Al-Cu-Mn系高强铝合金的研究进展[J]. 热加工工艺,2015,44(22):6-10.

Gong X, Wang H Q, Fu M M, et al. Research development of high-strength Al-Cu-Mn series aluminum alloy used for aviation and areospace[J]. Hot Working Technology, 2015, 44(22): 6-10.

[3]Zhan L H, Lin J G, Dean T A. A review of the development of creep age forming: Experimentation, modelling and applications[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 1-17.

[4]李勇,李东升,李小强. 大型复杂壁板构件塑性成形技术研究与应用进展[J]. 航空制造技术,2020,63(21):36-45.

Li Y, Li D S, Li X Q. A review of plastic forming technologies and applications for large and complex-shaped panels[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 36-45.

[5]Lam A C L, Shi Z S, Yang H L, et al. Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: Experimental and finite element studies[J]. Journal of Materials Processing Technology, 2015, 219: 155-163.

[6]Li Y, Shi Z S, Lin J G, et al. FE simulation of asymmetric creep-ageing behaviour of AA2050 and its application to creep age forming[J]. International Journal of Mechanical Sciences, 2018, 140: 228-240.

[7]Inforzato D J, Costa Junior P R, Fernandez F F, et al. Creep-age forming of AA7475 aluminum panels for aircraft lower wing skin application[J]. Materials Research, 2012, 15(4): 596-602.

[8]邓运来,周亮,晋坤,等. 2124铝合金蠕变时效的微结构与性能[J]. 中国有色金属学报,2010,20(11): 2106-2111.

Deng Y L, Zhou L, Jin K, et al. Microstructure and properties of creep aged 2124 aluminum alloy[J]. The Chinese JournaI of Nonferrous Metals, 2010, 20(11): 2106-2111.

[9]Wang X, Rong Q, Shi Z S, et al. Investigation of stress effect on creep, precipitation and dislocation evolution of Al-Li alloy during creep age forming[J]. Materials Science and Engineering: A, 2022, 836: 142723.

[10]吕凤工,黄遐,曾元松. 7B04铝合金带筋构件的蠕变时效变形行为研究[J]. 锻压技术,2015,40(3):99-104.

Lyu F G, Huang X, Zeng Y S. Research on deformation behavior of creep age forming for 7B04 aluminum alloy stiffened components[J]. Forging & Stamping Technology, 2015, 40(3): 99-104. 

[11]Ma P P, Zhan L H, Liu C H, et al. Strong stress-level dependence of creep-ageing behavior in Al-Cu-Li alloy[J]. Materials Science and Engineering: A, 2021, 802: 140381.

[12]Ho K C, Lin J G, Dean T A. Constitutive modelling of primary creep for age forming an aluminium alloy[J]. Journal of Materials Processing Technology, 2004, 153-154: 122-127.

[13]Li Y, Shi Z S, Lin J G, et al. A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy[J]. International Journal of Plasticity, 2017, 89: 130-149.

[14]黄霖,万敏,黄硕,等.7B04铝合金厚板蠕变时效成形有限元分析[J].航空制造技术,2007,(z1):484-487.

Huang L, Wan M, Huang S, et al. FE analysis of creep age forming for aluminum alloy 7B04 plate[J]. Aeronautical Manufacturing Technology,2007,(z1):484-487.

[15]Luo H, Li W D, Li C, et al. Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 3265-3271.

[16]Lyu F G, Li Y, Shi Z S, et al. Stress and temperature dependence of stress relaxation ageing behaviour of an Al-Zn-Mg alloy[J]. Materials Science and Engineering: A, 2020, 773: 138859.

[17]Ma Z Y, Zhan L H, Liu C H, et al. Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: Experiments and modeling[J]. International Journal of Plasticity, 2018, 110: 183-201.

[18]Rong Q, Shi Z S, Li Y, et al. Constitutive modelling and its application to stress-relaxation age forming of AA6082 with elastic and plastic loadings[J]. Journal of Materials Processing Technology, 2021, 295: 117168.

[19]Yang Y L, Zhan L H, Shen R L, et al. Investigation on the creep-age forming of an integrally-stiffened AA2219 alloy plate: Experiment and modeling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2015-2025.

[20]郑英,吴阳,张劲,等. 7475铝合金网格筋条壁板蠕变成形的试验和数值模拟[J]. 锻压技术,2012, 37(5):42-46.

Zheng Y, Wu Y, Zhang J, et al. Experiment and numerical simulation of creep forming for 7475 aluminum alloy integrally stiffened panel[J]. Forging & Stamping Technology, 2012, 37(5): 42-46.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com