Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior and constitutive equation on superalloy FGH4096 in vacuum solid solution state
Authors: Liu Jianxiao1 2 Zhai Yuewen1 Jiang Chao1 Zhou Leyu1 Zhou Zhiguang1 
Unit: 1. Beijing Reserach Institute of Mechanical & Electrical Technology Co. Ltd.CAM  2. China Machinery Vacuum Technology (Jinan)Co. Ltd. 
KeyWords: superalloy FGH4096  thermal deformation behavior  constitutive equation  vacuum solid solution  microstructure 
ClassificationCode:TG166.7
year,vol(issue):pagenumber:2023,48(5):306-313
Abstract:

 In order to study the thermal deformation behavior of superalloy FGH4096 after vacuum solution heat treatment, the isothermal constant strain rate thermal compression test was conducted by thermal simulation test machine Gleeble-3500 at the deformation temperatures of 1020, 1050, 1080, 1110 and 1140 ℃, the strain rates of 0.001, 0.01, 0.1 and 1 s-1, and the deformation amount of 60%, and based on the true stress-true strain curve of the thermal compression test, the Arrhenius constitutive equation with strain compensation for high temperature deformation was established by regression analysis and polynomial fitting. The results show that when the deformation temperature increases to 1080 and 1110 ℃, the alloy undergoes complete dynamic recrystallization. When the alloy is deformed at the condition of 1080 ℃, 0.001 s-1 and 1110 ℃, 0.01 s-1, the recrystallized grain size is coarsened at lower deformation temperatures under the same strain rate. The heat deformation activation energy of alloy is 902.049 kJ·mol-1. Thus, the constitutive model can accurately predict the rheological behavior of alloy during the thermal deformation process, and the stress level during thermal processing can be controlled by controlling the strain rate and the deformation temperature.

Funds:
济南市2019年“5150创新团队项目”
AuthorIntro:
作者简介:刘剑箫(1992-),女,硕士研究生 ,E-mail:woshiliujianxiao@126.com;通信作者:翟月雯(1982-),女,博士,研究员,E-mail:zhaiyuewen@163.com
Reference:

[1]张国庆, 田世藩, 汪武祥, 等. 先进航空发动机涡轮盘制备工艺及其关键技术[J]. 新材料产业, 2009,(11): 16-21.


Zhang G Q, Tian S F, Wang W X, et al. Advanced aero-engine turbine disc preparation process and its key technology[J]. Advanced Materials Industry, 2009,(11): 16-21.

[2]肖磊, 何英杰, 马向东, 等. 一种新型镍基粉末高温合金WZ-A3挤压工艺研究[J]. 稀有金属材料与工程, 2022, 51(6): 2215-2223.

Xiao L, He Y J, Ma X D, et al. Study of a new nickel-based powder high-temperature alloy WZ-A3 extrusion process[J]. Rare Metal Materials and Engineering, 2022, 51(6): 2215-2223.

[3]胡连喜, 冯小云. 粉末冶金高温合金研究及发展现状[J]. 粉末冶金工业, 2018, 28(4): 1-7.

Hu L X, Feng X Y. Research and development status of powder metallurgy high temperature alloys[J]. Powder Metallurgy Industry, 2018, 28(4): 1-7.

[4]邹金文, 汪武祥. 粉末高温合金研究进展与应用[J]. 航空材料学报, 2006,(3): 244-250.

Zou J W, Wang W X. Research progress and applications of powdered high temperature alloys[J]. Journal of Aeronautical Materials, 2006,(3): 244-250.

[5]夏天, 张义文, 迟悦, 等. Hf和Zr含量对FGH96合金平衡相及PPB的影响[J]. 材料热处理学报, 2013, 34(8): 60-67.

Xia T, Zhang Y W, Chi Y, et al. Effect of Hf and Zr content on the equilibrium phase and PPB of FGH96 alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 60-67.

[6]赵军普, 陶宇, 袁守谦, 等. 粉末冶金高温合金中的原始颗粒边界(PPB)问题[J]. 粉末冶金工业, 2010, 20(4): 43-49.

Zhao J P, Tao Y, Yuan S Q, et al. Primitive particle boundary (PPB) problem in powder metallurgy high temperature alloys[J]. Powder Metallurgy Industry, 2010, 20(4): 43-49.

[7]曾胜,常海平,张金,等.A356铝合金的高温流变行为及本构模型研究[J].锻压技术,2022,47(4):242-248.

Zeng S,Chang H P,Zhang J,et al. Study on high-temperature rheological behavior and constitutive model for A356 aluminum alloy[J]. Forging & Stamping Technology,2022,47(4):242-248.

[8]王岩, 谷宇, 王珏, 等. 铸态镍基高温合金GH4698热变形行为[J]. 锻压技术, 2021, 46(11): 250-254.

Wang Y, Gu Y, Wang J, et al. Thermal deformation behavior of cast nickel-based high temperature alloy GH4698[J]. Forging & Stamping Technology, 2021, 46(11): 250-254.

[9]陈拂晓, 郭云汉, 郭俊卿, 等. AZ31B镁合金热压缩力学行为与本构方程建立[J]. 锻压技术, 2011, 36(5): 144-148.

Chen F X, Guo Y H, Guo J Q, et al. Hot-compression mechanical behavior of AZ31B magnesium alloy and establishment of the instantonal equations[J]. Forging & Stamping Technology, 2011, 36(5): 144-148.

[10]Sellars C M,Mctegart W J.On the mechanism of hot deformation[J].Acta metallurgica,1966,14(9):1136-1138.

[11]雷雨, 徐念澳, 张晨洁, 等. 热变形中TC18钛合金本构关系及第二类再结晶全图研究[J]. 稀有金属材料与工程, 2020, 49(12): 4192-4198.

Lei Y, Xu N A, Zhang C J, et al. Study of TC18 titanium alloy intrinsic structure relationship in thermal deformation and the second type of recrystallization in the whole picture[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4192-4198.

[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[13]Wu H, Wen S P, Huang H, et al. Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression[J]. Materials Science and Engineering: A, 2016, 651: 415-424.

[14]Huang C Q, Deng J, Wang S X, et al. An Investigation on the softening mechanism of 5754 aluminum alloy during  multistage hot  deformation [J]. Metals, 2017, 7(4): 107.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com