Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Mechanical behaviors and failure mechanism of ultrasonic rivetless joint for Al-Ti dissimilar plate
Authors:  Wang Shicheng1 2  Li Jiguang1  Zhao Lun2  Guo Zixin1 2  Huo Xiaole2  Liang Zhaofeng2   Zhou Guangping2  Md Shafiqul Islam3 
Unit: (1.Faculty of Materials and Metallurgy  University of Science and Technology Liaoning  Anshan 114051  China  2.Institute of Intelligent Manufacturing Technology  Shenzhen Polytechnic  Shenzhen 518055  China  3.Department of Mechanical Engineering  Faculty of Engineering  Blekinge Institute of Technology  Karlskrona 37179  Sweden) 
KeyWords: ultrasonic metal welding  rivetless connection  dissimilar alloy  mechanical behaviors  microstructure 
ClassificationCode:TH131.1
year,vol(issue):pagenumber:2023,48(6):35-41
Abstract:

 To enhance the static mechanical properties of rivetless joint, a composite process of ultrasonic metal welding and rivetless connection was used. Then, taking 5A06 aluminum and TA1 titanium alloy as the substrates, the connection of Al-Ti dissimilar plates was conducted by rivetless connection, and the ultrasonic welding treatment was performed. Furthermore, the influences of ultrasonic welding on the static mechanical properties of rivetless joints for Al-Ti dissimilar plates were explored by tensile-shear test and microstructure observation. The results show that the ultrasonic welding can improve the forming quality and static mechanical properties of rivetless joint, especially when the aluminum plate is the upper plate. The fundamental mechanism of ultrasonic and rivetless composite process strengthening is the presence of solid-phase welding inside the joint, which leads to the change of stress, from the stress on the neck of joint to the stress on the welded area. Ultrasonic welding improves the plasticity of aluminum alloy plate, while the titanium alloy plate has no obvious change.

Funds:
国家自然科学基金资助项目(12104324);深职院博士后启动基金(6022310046K)
AuthorIntro:
王世成(1998-),男,硕士研究生
Reference:

 
[1]潘复生,张津,张喜燕,轻合金材料新技术
[M].北京:化学工业出版社, 2008. 


Pan F S, Zhang J, Zhang X Y. New Technology of Light Alloy Materials
[M].Beijing: Chemical Industry Press, 2008.
[2]Peng H, Chen C, Zhang H Y, et al. Recent development of improved clinching process
[J]. The International Journal of Advanced Manufacturing Technology,2020,110:3169-3199.


[3]Abe Y, Kato T, Mori K, et al. Mechanical clinching of ultrahigh strength steel sheets and strength of joints
[J]. Journal of Materials Processing Technology,2014,214(10):2112-2118.


[4]单丰武,杨海,王付才,等.5052H32铝合金薄板自冲铆接和无铆连接对比研究
[J].锻压技术,2021,46(5):101-108.

Shan F W, Yang H, Wang F C.et al. Comparative study on self-piercing riveting and clinching for 5052H32 aluminum alloy sheet
[J]. Forging & Stamping Technology,2021,46(5):101-108.


[5]He X C. Clinching for sheet materials
[J]. Science and Technology of Advanced Materials,2017,18(1):381-405.


[6]王保中. 钢铝异质薄板无铆连接成形接头缺陷研究
[D].长春:长春工业大学,2021.

Wang B Z. Study on the Defects of Clinch Forming Joint of Steel Aluminum Heterogeneous Sheet
[D]. Changchun: Changchun University of Technology, 2021.


[7]Zhang X G, Chen C. Experimental investigation of joining aluminumalloy sheets by stepped mechanical clinching
[J]. Journal of Materials Research and Technology,2022,19:566-577.


[8]Ren X Q, Chen C, Ran X K, et al. Effects of friction factor on mechanical performance of the AA5182 clinched joint
[J]. The International Journal of Advanced Manufacturing Technology,2022, 120: 1831-1841. 


[9]Peng H, Chen C,Li H J,et al. Joining thin-walled structures without protuberance by two-strokes flattening clinching process
[J]. The International Journal of Advanced Manufacturing Technology,2021,116:1213-1223. 


[10]Sabra A M K, Mukesh K J. Die-less clinching process and joint strength of AA7075 aluminum joints
[J]. Thin-Walled Structures,2017,120:421-431.


[11]杨程,姚杰,牛艳,等.钢铝无铆连接疲劳寿命分析
[J]. 塑性工程学报,2021,28(1): 154-162.

 Yang C, Yao J, Niu Y, et al. Fatigue life analysis of steel-aluminum non-rivet connection
[J]. Journal of Plasticity Engineering, 2021,28 (1): 154-162.


[12]李奇涵, 孟楷博, 韩小亨,等. 基于Kriging模型的钢铝异质板料无铆钉铆接结构工艺参数优化
[J]. 锻压技术,2022,47(1):36-42.

Li Q H, Meng K B, Han X H, et al. Optimization on structural process parameters in clinching for steel-aluminum heterogeneous sheets based on Kriging model
[J]. Forging & Stamping Technology, 2022,47 (1): 36-42.


[13]韩善灵, 姜浩然, 刘娟,等. 成形速度及温度对无铆冲压连接工艺的影响
[J].机械制造,2018,47(1):14-18.

Han S L, Jiang H R, Liu J, et al. Effects of forming speed and temperature on clinching technology
[J]. Machine Building & Automation, 2018,47(1):14-18.


[14]GB/T 2649—1989,焊接接头机械性能试验取样方法
[S].

GB/T 2649—1989, Methods of sampling for mechanical properties tests of welded joint
[S].


[15]芦跃峰.异种金属薄板无铆连接数值模拟及实验研究
[D]. 秦皇岛:燕山大学,2021.

Lu Y F. Numerical Simulation and Experimental Study on Mechanical Clinching of Dissimilar Metal Sheets
[D]. Qinhuangdao: Yanshan University, 2021.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com