Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Constitutive equation on hydrogenated Ti65 high-temperature titanium alloy coupled with hydrogen content
Authors: Tian Zhuang1  Yu Jun2  Zhang Hao1  Wang Xinyun1  Deng Lei1  Jin Junsong1  Gong Pan1 
Unit: (1.State Key Laboratory of Material Processing and Die and Mould Technology  Huazhong University of Science and  Technology  Wuhan 430074  China 2.Wuhan NEWWISH Technology Co.  Ltd.  Ezhou 436070  China) 
KeyWords: hydrogenation  Ti65 high-temperature titanium alloy  high temperature compression  hot deformation behavior  constitutive equation 
ClassificationCode:TG316
year,vol(issue):pagenumber:2023,48(6):204-213
Abstract:

  To study the influence of hydrogenation on the hot deformation behavior of Ti65 high-temperature titanium alloy, the high temperature compression tests of the samples with different hydrogen contents in the α+β two-phase region and β single-phase region were carried out by hot simulation experiment machine Gleeble-3500, respectively. The results show that the hydrogenated and unhydrogenated samples have similar rheological characteristics in the two-phase region and single-phase region, and the main softening mechanism in the two-phase region is dynamic recrystallization (DRX) of α phase and in the single-phase region is dynamic recovery (DRV) of β phase. Hydrogenation promotes the dynamic recrystallization softening of Ti65 high-temperature titanium alloy, and the deformation resistance of Ti65 high-temperature titanium alloy at 910 ℃ and 1 s-1 reduces near 104 MPa by adding 0.13 wt.% hydrogen, which significantly improves the hot workability of Ti65 high-temperature titanium alloy. Based on the experimental results, the Arrhenius constitutive equation is constructed by polynomial fitting method, and the relationships between various parameters and hydrogen content are determined. The constitutive equations of Ti65 high-temperature titanium alloy coupled with hydrogen content in the α+β two-phase region and β single-phase region are established by the polynomial fitting, and the average relative absolute errors of these equations are 9.41% and 6.68%, respectively. Thus, the established constitutive equations can accurately predict the rheological stress of hydrogenated Ti65 high-temperature titanium alloy, and provide a theoretical basis for formulating and optimizing the forming process of locally hydrogenated titanium alloy parts.

Funds:
国家自然科学基金资助项目(52090043);中央高校基本科研业务费专项资金资助项目(2021GCRC003)
AuthorIntro:
田壵(1996-),男,硕士研究生
Reference:

 
[1]Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloys-An overview
[J]. Materials Science and Engineering: A,1999, 263(2): 243-256.



[2]Lütjering G, Williams J C. Titanium
[M]. Heidelberg: Springer Berlin, 2007.


[3]Sun F, Li J S, Kou H C, et al. Nano-precipitation and tensile properties of Ti60 alloy after exposure at 550 ℃ and 650 ℃
[J]. Materials Science and Engineering: A, 2015, 626: 247-253.


[4]Evans R W, Hull R J, Wilshire B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834
[J]. Journal of Materials Processing Technology,1996, 56(1): 492-501.


[5]Peng W W, Zeng W D, Wang Q J, et al. Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map
[J]. Materials Science and Engineering: A, 2013, 571: 116-122.


[6]Williams J C. Alternate materials choices-some challenges to the increased use of Ti alloys
[J]. Materials Science and Engineering: A, 1999, 263(2): 107-111.


[7]Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective
[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.


[8]Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60
[J]. Acta Materialia, 2017, 131: 305-314.


[9]蔡建明, 李娟, 田丰, 等. 先进航空发动机用高温钛合金双性能整体叶盘的制造
[J]. 航空制造技术,2019, 62(19): 34-40.

Cai J M, Li J, Tian F, et al. Manufacturing of high temperature titanium alloy dual-property blisk used for advanced aero-engine
[J]. Aeronautical Manufacturing Technology, 2019, 62(19): 34-40.


[10]李文彬. 置氢Ti65高温钛合金的变形行为与微观组织演变研究
[D]. 武汉:华中科技大学, 2021.

Li W B. Research on Deformation Behavior and Microstructure Evolution of Hydrogenated Ti65 Alloy
[D]. Wuhan:Huazhong University of Science and Technology, 2021.


[11]邓磊, 李文彬, 王新云, 等. 一种基于局部置氢制造钛合金双性能涡轮盘的方法及产品
[P]. 中国: CN201811502569.2,2020.

Deng L, Li W B, Wang X Y, et al. A method and product for manufacturing a titanium alloy dual-performance turbine disk based on local hydrogenation
[P]. China: CN201811502569.2,2020.


[12]纪博宇, 李细锋, 李剑飞. 置氢Ti-55钛合金变形本构方程及高温增塑机理研究
[J]. 塑性工程学报,2018, 25(1): 180-186.

Ji B Y, Li X F, Li J F. Constitutive equation and high temperature plasticizing mechanism of hydrogenated Ti-55 titanium alloy
[J]. Journal of Plasticity Engineering,2018, 25(1): 180-186.


[13]宗影影. 钛合金置氢增塑机理及其高温变形规律研究
[D]. 哈尔滨:哈尔滨工业大学, 2007.Zong Y Y. Study on the Hydrogen Enhanced Plasticity Mechanism and Deformation Behaviors of Titanium Alloys at High Temperatures
[D]. Harbin:Harbin Institute of Technology, 2007.


[14]黄树晖. 置氢钛合金与纯锆高温软化行为及其对锻造变形的影响
[D]. 哈尔滨:哈尔滨工业大学, 2013.

Huang S H. High Temperature Softening Behavior of Hydrogenated Titanium Alloys and Pure Zirconium and its Effect on Forging Deformation
[D]. Harbin:Harbin Institute of Technology, 2013.


[15]赵敬伟. 热氢处理对钛合金组织演变及高温变形行为的影响
[D]. 沈阳: 东北大学, 2009.

Zhao J W. Influence of Thermohydrogen Treatment on Microstructural Evolution and High Temperature Deformation Behavior of Titanium Alloys
[D]. Shenyang:Northeastern University, 2009.


[16]唐敏. 置氢ZrTiAlV合金的高温变形行为及显微组织演变
[D]. 重庆:重庆大学, 2020.

Tang M. High Temperature Deformation Behavior and Microstructure Evolution of Hydrogenated ZrTiAlV Alloy
[D]. Chongqing:Chongqing University, 2020.


[17]Wang K, Li M Q. Characterization of discontinuous yielding phenomenon in isothermal compression of TC8 titanium alloy
[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1583-1588.


[18]Ghasemi E, Zarei-Hanzaki A, Farabi E, et al. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development
[J]. Journal of Alloys and Compounds, 2017, 695: 1706-1718.


[19]Zong Y Y, Huang S H, Feng Y J, et al. Hydrogen induced softening mechanism in near alpha titanium alloy
[J]. Journal of Alloys and Compounds, 2012, 541: 60-64.


[20]Jia W J, Zeng W D, Zhou Y G, et al. High-temperature deformation behavior of Ti60 titanium alloy
[J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.


[21]Sellars C M, McTegart W J. On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


[22]Sellars C M, McTegart W J. Hot workability
[J]. International Metallurgical Reviews,1972, 17(158): 1-22.


[23]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1): 22-32.


[24]龙帅. 合金热变形行为快速求解方法与应用研究
[D]. 重庆:重庆大学, 2020.

Long S. Research on the Rapid Solution and Analysis Method for Hot Deformation Behavior of Alloys and its Application
[D]. Chongqing:Chongqing University, 2020.


[25]Briottet L, Jonas J J, Montheillet F. A mechanical interpretation of the activation energy of high temperature deformation in two phase materials
[J]. Acta Materialia, 1996, 44(4): 1665-1672.


[26]Li B, Pan Q L, Yin Z M. Microstructural evolution and constitutive relationship of Al-Zn-Mg alloy containing small amount of Sc and Zr during hot deformation based on Arrhenius-type and artificial neural network models
[J]. Journal of Alloys and Compounds, 2014, 584: 406-416.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com