Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Physical constitutive equation of Fe-Mn-Al-C low density steel under isothermal compression based on strain compensation
Authors: Sun Jian1 2 3 4 5 Cheng Rui2 3 4 5 Wang Zi2 3 4 5 Li Jinghui1 Huang Zhenyi1 
Unit: (1.School of Metallurgical Engineering  Anhui University of Technology  Ma′anshan 243002  China  2.School of Mechanical Engineering  Tongling University  Tongling 244061  China  3.Key Laboratory of Construction Hydraulic Robots of Anhui Province Higher Education Institutes  Tongling 244061  China  4.New Copper-based Material Industry Generic Technology Research Center of Anhui Province  Tongling 244061  China  5.Key Laboratory of Additive Manufacturing of Tongling City  Tongling 244061  China) 
KeyWords: low density steel  isothermal compression  strain compensation  physical constitutive equation  rheological stress 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(6):214-222
Abstract:

 The thermal compression experiment of Fe-27.51Mn-8.69Al-1.12C low density steel under the temperature of 900-1100 ℃ and the strain rate of 0.01-5 s-1 was carried out by thermal simulation experiment machine Gleeble-1500D, and the rheological stress curves characteristics of the steel were analyzed by the experimental data. Then, the physical constitutive model considering strain coupling was established, and the verification analysis was conducted. The results show that the thermodynamic conditions such as deformation temperature and strain rate have significant effects on the rheological stress of low density steel, and the high temperature and low strain rate are more conducive to the recrystallization of low density steel. The prediction accuracy of physical constitutive equation for low density steel under isothermal compression based on peak stress is high, and the linear fitting correlation coefficient is 0.991. The physical constitutive equation of low density steel under isothermal compression based on strain compensation can better describe the change rule of rheological stress for low density steel under hot compression, the correlation coefficient r is 0.980, and the average relative error AARE between the predicted and experimental values is 6.9%.

Funds:
孙建(1988-),男,博士研究生,讲师
AuthorIntro:
国家自然科学基金资助项目(51674004,51805002);安徽省高等学校自然科学研究重点项目(2022AH051760);铜陵学院自然科学研究项目(2017tlxy23);国家级本科生创新训练项目(202210383086);铜陵学院大学生科研基金项目(2021tlxydxs099);工程液压机器人安徽普通高校重点实验室开放课题资助(TLXYCHR-O-21YB03);铜陵学院横向科研项目(2023tlxyxdz077)
Reference:

 
[1]Chen S P, Rana R, Halder A, et al. Current state of Fe-Mn-Al-C low density steels
[J]. Progress in Materials Science, 2017, 89(8):345-391. 



[2]Pierce D T, Field D M, Limmer K R, et al. Hot deformation behavior of an industrially cast large grained low density austenitic steel
[J]. Materials Science and Engineering: A, 2021, 825: 141785-141795.


[3]Xie Z Q, Hui W J, Zhang Y J, et al. Effect of Cu and solid solution temperature on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels
[J].Journal of Materials Research and Technology, 2022,18:1307-1321.


[4]曹晨星,王存宇,张婧,等.冷却速率对奥氏体型FeMnAlC钢组织和性能的影响
[J].钢铁研究学报,2022,34(3):272-279.

Cao C X,Wang C Y,Zhang J,et al. Effect of cooling rate on microstructure and properties of austenitic FeMnAlC steel
[J]. Journal of Iron and Steel Research, 2022,34(3):272-279.


[5]Kwok T W J, Rahman K M, Vorontsov V A, et al. Strengthening κ-carbide steels using residual dislocation content
[J]. Scripta Materialia, 2022, 213: 114626-114631.


[6]Hu S F, Zheng Z B, Yang W P, et al. Fe-Mn-C-Al low-density steel for structural materials: A review of alloying, heat treatment, microstructure, and mechanical properties
[J]. Steel Research International, 2022, 93(9): 2200191-2200204.


[7]Wei L L, Gao G H, Kim J, et al. Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement
[J]. Materials Science and Engineering: A, 2022, 838: 142829-142839.


[8]Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel
[J]. Metallurgical and Materials Transactions A, 2009, 40: 1520-1523.


[9]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels
[J]. Steel Research International, 2006, 77(9-10): 627-633.


[10]Li G Q, Shen Y F, Jia N, et al. Microstructural evolution and mechanical properties of a micro-alloyed low-density δ-TRIP steel
[J]. Materials Science and Engineering: A, 2022, 848: 143430-143446.


[11]Li Z, Wang Y, Cheng X, et al. The effect of Ti-Mo-Nb on the microstructures and tensile properties of a Fe-Mn-Al-C austenitic steel
[J]. Materials Science and Engineering: A, 2020, 780: 139220-139229.


[12]Moon J, Jo H H, Park S J, et al. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure
[J]. Materials Science and Engineering: A, 2021, 808: 140954-140962.


[13]Moon J, Park S J, Lee C, et al. Microstructure evolution and age-hardening behavior of microalloyed austenitic Fe-30Mn-9Al-0.9C light-weight steels
[J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4500-4510.


[14]Ramos J, Piamba J F, Sanchez H, et al. Mssbauer and XRD characterization of the effect of heat treatment and the tribological test on the physical and mechanical properties of a Fe-Mn-Al-C alloy
[J]. Hyperfine Interactions, 2017, 238(1): 1-8.


[15]Song N, Zhao W M, Dong L S, et al. Effect of solution treatment temperature on microstructure and properties of Fe-0.72Mn-3.7Al-0.53C low-density cast steel
[J]. Metals, 2022, 12(8): 1290-1301.


[16]Zhang J L, Hu C H, Zhang Y H, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2 C-xCr steels
[J]. Materials & Design, 2020, 186: 108307-108320.


[17]杨富强,宋仁伯,李亚萍,等.退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响
[J].材料研究学报,2015,29(2):108-114.

Yang F Q, Song R B, Li Y P, et al. Effect of annealing temperature on properties of cold rolled Fe-Mn-Al-C low density steel
[J]. Chinese Journal of Materials Research,2015,29(2):108-114.


[18]Lee J, Kim H, Park S J, et al. Correlation between macroscale tensile properties and small-scale intrinsic mechanical behavior of Mo-added Fe-Mn-Al-C lightweight steels
[J]. Materials Science and Engineering: A, 2019, 768: 138460-138469.


[19]Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel
[J]. Acta Metallurgica Sinica, 2016, 29(5): 441-449.


[20]Liu D G, Ding H, Cai M H, et al. Hot deformation behavior and processing map of a Fe-11Mn-10Al-0.9C duplex low-density steel susceptible to κ-carbides
[J]. Journal of Materials Engineering and Performance, 2019, 28(8): 5116-5126.


[21]Kalantari A R, Zarei-Hanzaki A, Abedi H R, et al. The high temperature deformation behavior of a Triplex (ferrite+ austenite+ martensite) low density steel
[J]. Journal of Materials Research and Technology, 2021, 13: 1388-1401.


[22]Sun J, Li J H, Wang P, et al. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel
[J]. Transactions of the Indian Institute of Metals,2022, 75:699-716.


[23]魏海莲,周红伟,潘红波.微合金化高强钢的热变形行为及物理本构方程
[J].锻压技术,2022,47(5):217-225.

Wei H L, Zhou H W, Pan H B. Hot deformation behavior and physical constitutive equation of microalloyed high strength steel
[J]. Forging & Stamping Technology, 2022,47(5):217-225.


[24]Wan P, Yu H X, Li F, et al. Hot deformation behaviors and process parameters optimization of low-density high-strength Fe-Mn-A-C alloy steel
[J]. Metals and Materials International, 2022, 28(10): 2498-2512.


[25]孙建,黄贞益,李景辉,等.Fe-28Mn-9Al-1C轻质合金钢的热变形行为
[J].材料热处理学报,2022,43(3):142-150.

Sun J, Huang Z Y, Li J H, et al. Hot deformation behavior of Fe-28Mn-9Al-1C lightweight alloy steel
[J]. Transactions of Materials and Heat Treatment,2022,43(3):142-150.


[26]Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a k-carbide-bearing multiphase Fe-11Mn-10Al-0.9C light weight steel
[J]. Materials Science and Engineering A,2020,772:138682-138693.


[27]张婧,王存宇,王辉,等.奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究
[J].钢铁研究学报,2023,35(4):434-442.

Zhang J, Wang C Y, Wang H, et al. Study on thermal deformation behavior of austenitic Fe30Mn9Al0.9C low density steel
[J]. Journal of Iron and Steel Research,2023,35(4):434-442.


[28]Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
[M]. Oxford: Pergamon Press,1982.


[29]Yu R H, Wang P C, Li G S, et al. Correction and modeling of flow stress during hot deformation of 7055 aluminum alloy
[J]. Journal of Materials Engineering and Performance, 2022,31(8):6870-6879. 


[30]Churyumov A Y, Kazakova A A, Pozdniakov A V, et al. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe-35Mn-10Al-1C steel
[J].Metals, 2022, 12(5): 831-844.


[31]魏海莲,邓笑举,潘红波,等.基于蠕变理论的钒和铌微合金化中碳钢的物理本构方程
[J].塑性工程学报,2022,29(9):207-215.

Wei H L, Deng X J, Pan H B, et al. Physical constitutive equation of vanadium and niobium microalloyed medium carbon steel based on creep theory
[J]. Journal of Plasticity Engineering, 2022,29(9):207-215.


[32]Cai Z M, Ji H C, Pei W C, et al. Hot workability, constitutive model and processing map of 3Cr23Ni8Mn3N heat resistant steel
[J]. Vacuum, 2019, 165: 324-336.


[33]Yu R H, Li X, Li W J, et al. Application of four different models for predicting the high-temperature flow behavior of TG6 titanium alloy
[J]. Materials Today Communications, 2021, 26: 102004-102016.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com