Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature rheological behavior of 2209 duplex stainless steel based on modified Johnson-Cook constructive model
Authors: Zhang Fangping  Cheng Xinyao  Cao Yu  Zhang Hongzheng  Wang Chao 
Unit: (Engineering Research Center of Heavy Machinery  Taiyuan University of Science and Technology  Taiyuan 030024  China) 
KeyWords: 2209 duplex stainless steel  high temperature rheological behavior  Johnson-Cook constructive model  strain rate  deformation temperature 收稿日期:2022-07-28 修订日期:2022-10-26 
ClassificationCode:TG156.1
year,vol(issue):pagenumber:2023,48(6):223-230
Abstract:

  The unidirectional thermal compression expriment of 2209 duplex stainless steel was conducted at the strain rate of 0.01-10 s-1 and the deformation temperature of 950-1150 ℃ by thermal simulation machine Gleeble-3800, and the high temperature rheological behavior of 2209 duplex stainless steel was studied. Then, the influences of strain rate and deformation temperature on the two phases relationship of 2209 duplex stainless steel were analyzed, and the Johnson-Cook constitutive model of 2209 duplex stainless steel at wide strain rate and wide deformation temperature was modified. The results show that the deformation temperature and strain rate have a significant effect on the rheological stress of 2209 duplex stainless steel. The modified Johnson-Cook constitutive model can accurately predict its high temperature rheological behavior. The correlation between the predicted and experimental values is 0.99817, and the average relative error is 4.026%.

Funds:
山西省先进钢铁材料重点科技创新平台项目(201805D115061-2)
AuthorIntro:
张芳萍(1971-),女,硕士,副教授
Reference:

 
[1]魏振宇,吴玖.双相不锈钢论文集
[M].北京:冶金工业出版社,2000.


Wei Z Y, Wu J. Duplex Stainless Steel Papers
[M].Beijing:Metallurgical Industry Press,2000.


[2]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
[J]. Engineering Fracture Mechanics,1983, 21:541-548.


[3]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel
[J]. Materials Science & Engineering:A,2010, 527(26):6980-6986.


[4]Lin Y C,Chen M S,Zhang J.Modeling of flow stress of 42CrMo steel under hot compression
[J]. Materials Science and Engineering: A,2009, 499(1-2):88-92.


[5]李润霞,张磊,刘兰吉,等.Al-17.5Si-4Cu-0.5Mg合金热变形行为及其加工图
[J].航空材料学报,2015,35(1):25-32.

Li R X, Zhang L, Liu L J, et al. Hot deformation behavior and processing maps of Al-17.5Si-4Cu-0.5Mg alloys
[J]. Journal of Aeronautical Materials,2015, 35(1):25-32.


[6]王志蒙,王宇璞,尹起,等. DP780 双相钢动态再结晶动力学研究
[J]. 塑性工程学报,2018,25(6):194-201.

Wang Z M, Wang Y P, Yin Q, et al. Dynamic recrystallization kinetics of DP780 dual phase steel
[J]. Journal of Plasticity Engineering,2018, 25(6):194-201.


[7]吴天海,王建军,张影,等.热压缩过程中2205双相不锈钢的组织演变和软化机制
[J].材料研究学报,2019,33(4):254-260.

Wu T H, Wang J J, Zhang Y, et al, Microstructural evolution and softening mechanism of 2205 duplex stainless steel during hot compression
[J]. Chinese Journal of Materials Research,2019,33(4):254-260.


[8]Zhang P, Yi C, Chen G, et al.Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy
[J].Metals,2016,6(7):161-167.


[9]陈雷,王龙妹,杜晓建,等.2205双相不锈钢的高温变形行为
[J].金属学报,2010,46(1):52-56.

Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel
[J].Acta Metallurgica Sinica,2010,46(1):52-56.


[10]肖翔,刘国权,胡本芙,等.12Cr3WV低活性F/M钢的高温热变形行为
[J].材料科学与工艺,2013,21(5):57-64.

Xiao X, Liu G Q, Hu B F, et al. Hot deformation behavior of 12Cr3WV reducedactivation ferrite/martensite steel
[J].Materials Science and Technology,2013,21(5):57-64.


[11]Bing S A, Tza B, Lin S A. Flow behavior and dynamic recrystallization of a power metallurgy nickel-based superalloy during hot compression in (γ+γ)-phase region
[J]. Journal of Alloys and Compounds,2021,891:161944.


[12]Gambirasio L, Rizzi E. An enhanced Johnson-Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow
[J]. Computational Materials Science,2016, 113:231-265.


[13]Prawoto Y, Fanone M, Shahedi S, et al. Computational approach using Johnson-Cook model on dual phase steel
[J]. Computational Materials Science,2012, 54:48-55.


[14]Daoud M, Chatelain J F, Bouzid A. Effect of rake angle-based Johnson-Cook material constants on the prediction of residual stresses and temperatures induced during Al2024-T3 machining process
[J]. International Journal of Mechanical Sciences,2017, 122:392-404.


[15]杨扬,曾毅,汪冰峰.基于Johnson-Cook模型的TC16钛合金动态本构关系
[J].中国有色金属学报,2008,108(3):505-510.

Yang Y, Zeng Y, Wang B F. Johnson-Cook dynamic constitutive relationship for TC16 titanium alloy
[J]. The Chinese Journal of Nonferrous Metals,2008,108(3):505-510.


[16]Milani A S, Dabboussi W, Nemes J A, et al. An improved multi-objective identification of Johnson-Cook material parameters
[J]. International Journal of Impact Engineering, 2009, 36(2):294-302.


[17]李建光,施琪,曹结东.Johnson-Cook本构方程的参数标定
[J].兰州理工大学学报,2012,38(2):164-167.

Li J G, Shi Q, Cao J D. Parameters calibration for Johnson-Cook constitutive equation
[J].Journal of Lanzhou University of Technology,2012,38(2):164-167.


[18]Notta-Cuvier D, Langrand B, Markiewicz E, et al. Identification of Johnson-Cook′s viscoplastic model parameters using the virtual fields method: application to titanium alloy Ti6Al4V
[J]. Strain,2013,49(1):159-163.


[19]柳爱群, 黄西成. 高应变速率变形的Johnson-Cook动态本构模型参数识别方法
[J]. 应用数学和力学,2014,35(2):219-225.

Liu A Q, Huang X C. Identification of high-strain-rate material parameters in dynamic Johnson-Cook cvonstitutive model
[J]. Applied Mathematics and Mechanics,2014,35(2):219-225.


[20]Kang W J, Cho S S, Huh H, et al. Modified Johnson-Cook model for vehicle body crashworthiness simulation
[J]. International Journal of Vehicle Design,1999, 21(4/5):424-435.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com