Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior of aerospace stainless steel 1Cr10Co6MoVNbN
Authors: Bai Qingqing1 2 Hu Jin3  Liu Tingyao1 2 Wang Enuo1 2 Song Lingxi1 2 
Unit: (1.Chengdu Advanced Metal Materials Industry Technology Research Institute Co.  Ltd.  Chengdu 610303  China  2.State Key Laboratory of Meatl Material for Marine Equipment and Application Anshan 114009  China  3.Jiangyou Changcheng Special Steel Co.Ltd.of Pangang Group  Jiangyou 621700 China) 
KeyWords: 1Cr10Co6MoVNbN stainless steel thermal deformation  constitutive equation  recrystallization  critical stress  critical strain 
ClassificationCode:TG142.73
year,vol(issue):pagenumber:2023,48(6):238-244
Abstract:

 The thermal deformation behavior of 1Cr10Co6MoVNbN stainless steel under the temperature of 800-1100 ℃ and the strain rate of 0.01-10 s-1 was studied by thermal simulation experimental machine Gleeble-3500, and the stress-strain curve was obtained. Then, the constitutive equation was constructed, and the influences of temperature, strain rate and deformation amount on its microstructure were analyzed. The results show that during the thermal deformation process, the peak strain increases with the decreasing of deformation temperature or the increasing of strain rate, the dynamic recrystallization occurs, and the temperature has obvious influence on the microstructure of dynamic recrystallization. When the strain rate is 1 s-1, the recrystallization volume fraction and the grain size are the smallest. When deformed at low strain rate, the recrystallized structure is prone to mixed crystal. The relationships between critical stress and peak stress, and between critical strain and peak strain are determined by θ-σ curve, respectively. 

Funds:
四川省重大科技专项项目(2022ZDZX0040)
AuthorIntro:
张海成(1988-),男,硕士,高级工程师
Reference:

 
[1]张慧萍,王崇勋,杜煦.飞机起落架用300M超高强钢发展及研究现状
[J].哈尔滨理工大学学报,2011,16(6):73-76.


Zhang H P, Wang C X, Du X. Development and research status of 300M ultra-high strength steel for aircraft landing gear
[J]. Journal of Harbin University of Technology, 2011, 16 (6): 73-76.


[2]李铭.大型飞机起落架制造技术
[J].航空制造技术,2008,318(21):68-71.

Li M. Large aircraft landing gear manufacturing technology
[J]. Aviation Manufacturing Technology, 2008,318(21): 68-71.


[3]宋春艳. 300M飞机起落架外筒锻件生产过程中关键技术研究
[D].秦皇岛:燕山大学,2014.

Song C Y. Study of the Key Technology of Producing for 300M Aircraft Landing Gear Outer Cylinder Forging
[D]. Qinhuangdao:Yanshan University, 2014.


[4]冯军.大型民机起落架的发展趋势与关键技术
[J].航空制造技术,2009,324(2):52-54,56.

Feng J. Development trend and key technologies of large civil aircraft landing gear
[J]. Aviation Manufacturing Technology, 2009, 324(2): 52-54,56.


[5]王瑞. 超高强度钢制备工艺的关键技术研究
[D].沈阳:东北大学,2017.

Wang R. Research on Key Technologies of Ultra-High Strength Steel Preparation Process
[D]. Shenyang:Northeast University, 2017.


[6]Luo J, Li M Q, Liu Y G, et al. The deformation behavior in isothermal compression of 300M ultrahigh-strength steel
[J]. Materials Science and Engineering A, 2012, 534(2):314-322.


[7]赵振业,李志,刘天琦,等.探索新强韧化机制开拓超高强度钢新领域
[J].中国工程科学,2003,(9):39-42,54.

Zhao Z Y, Li Z, Liu T Q,et al. Exploring a new strengthening and toughening mechanism and opening up a new field of ultra-high strength steel
[J]. China Engineering Science, 2003, (9): 39-42,54.


[8]李杰,李志,颜鸣皋.高合金超高强度钢的发展
[J].材料工程,2007,287(4):61-65.

Li J, Li Z, Yan M G. Development of high alloy ultra-high strength steel
[J]. Materials Engineering, 2007,287(4): 61-65.


[9]石旭. 300M超高强钢高温本构模型的研究
[D]. 哈尔滨:哈尔滨理工大学,2015.

Shi X. Research on Constitutive Model of 300M Ultra-High Strength Steel at High Temperature
[D]. Harbin:Harbin University of Science and Technology, 2015.


[10]章晓婷,黄亮,李建军,等.300M高强钢高温流变行为及本构方程
[J].中南大学学报:自然科学版,2017,48(6):1439-1447.

Zhang X T, Huang L, Li J J, et al. High temperature rheological behavior and constitutive equation of 300M high strength steel
[J]. Journal of Central South University:Science and Technology, 2017,48 (6): 1439-1447.


[11]祁荣胜,景阳端,刘鑫刚,等. 300M高强钢热变形行为及其热加工图
[J].塑性工程学报,2016,23(2):130-135.

Qi R S, Jing Y D, Liu X G, et al. Hot deformation behavior and hot working diagram of 300M high strength steel
[J]. Journal of Plasticity Engineering, 2016,23 (2): 130-135.


[12]黄顺喆,厉勇,王春旭,等.300M钢的热变形行为研究
[J].热加工工艺,2010,39(20):25-28.

Huang S Z, Li Y, Wang C X, et al. Study on the hot deformation behavior of 300M steel
[J]. Hot Working Technology, 2010, 39 (20): 25-28.


[13]赵明杰,邓磊,孙朝远,等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展
[J].科学通报,2022,67(11):1036-1053.

Zhao M J, Deng L, Sun C Y, et al. Research progress on deformation mechanism and process of full process forging of large 300M high-strength steel components
[J]. Chinese Science Bulletin, 2022,67 (11): 1036-1053.


[14]赵明杰,黄亮,李昌民,等. 300M钢的热变形行为及热锻成形工艺研究现状
[J].精密成形工程,2020,12(6):16-27.

Zhao M J, Huang L, Li C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel
[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 16-27.


[15]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming
[J]. Journal of Materials Processing Technology, 2004, 152(2):136-143.


[16]Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834
[J]. Material Science Engineering A, 2005, 396(1-2):50-60.


[17]段园培,黄仲佳,余小鲁,等.基于摩擦修正的TB6合金流变应力行为研究及本构模型建立
[J].稀有金属,2014,38(2):202-209.

Duan Y P, Huang Z J, Yu X L, et al. Research on flow stress behavior of TB6 alloy based on friction correction and establishment of constitutive model
[J]. Chinese Journal of Rare Metals, 2014, 38 (2): 202-209.


[18]Sellars C M, Mctegart W J. On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


[19]Zener C, Hollomon J H . Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1):22-32.


[20]薛小伟. 300M钢大型锻坯热成形工艺研究
[D].长沙:湖南大学,2019.

Xue X W. Research on Hot Forming Process of 300M Steel Large Forging Blank
[D].Changsha: Hunan University, 2019.


[21]Xia Y F, Long S, Wang T Y, et al. A study at the workability of ultra-high strength steel sheet by processing maps on the basis of DMM
[J]. High Temperature Materials and Processes, 2017, 36(7): 657-667.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com