Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of strain rate on properties for low alloy high strength steel
Authors: Liu Haina1 Mei Yundong1 Liu Lingbing2 
Unit: (1.College of Mechanical and Electronic Engineering Huanghe Jiaotong University Jiaozuo 454950 China  2.Taixin Machinery Manufacturing Co. Ltd. Jiaozuo 454000 China) 
KeyWords: strain rate  low alloy high strength steel  tensile strength  fracture absorption energy  fracture morphology 
ClassificationCode:U463.83
year,vol(issue):pagenumber:2023,48(6):253-257
Abstract:

 For low alloy high strength steel H300LA, the mechanical properties were tested by hydraulic servo high-speed tensile testing machine at strain rates of 0.001, 0.1,1, 10, 100, 200,500 and 1000 s-1, and the yield strength, tensile strength and elongation under different strain rates were obtained. Then, the fracture absorption energy under different strain rates was calculated by integral mechanical curve, and the influence laws of strain rate on material properties were analyzed. Furthermore, the fracture morphology and change law of the test specimens under different strain rates were analyzed by scanning electron microscopy, and the fracture characteristics of the material were analyzed. The results show that the tensile strength and elongation of low alloy high strength steel H300LA are positively correlated with strain rate, and have obvious strain rate sensitivity. The fracture absorption energy increases with the increasing of strain rate, and the fracture morphology is dimple. As the strain rate increases, the number and the size of dimples increase.

Funds:
河南省智能制造技术与装备工程技术研究中心项目(3118210370)
AuthorIntro:
刘海娜(1984-),女,硕士,讲师
Reference:

 
[1]赵征志,陈伟健,高鹏飞,等.先进高强度汽车用钢研究进展及展望
[J].钢铁研究学报,2020,32(12):1059-1076.


Zhao Z Z,Chen W J,Gao P F,et al. Progress and perspective of advanced high strength automotive steel
[J]. Journal of Iron and Steel Research,2020,32(12):1059-1076.


[2]徐李军,时朋召,张淑兰.低合金高强钢微观组织转变机制
[J].钢铁研究学报,2019,31(11):988-996.

Xu L J, Shi P Z,Zhang S L. Microstructure evolution mechanism of HSLA steel
[J]. Journal of Iron and Steel Research, 2019, 31(11):988-996.


[3]徐鑫,梁笑,李春林,等. 应变速率对δ-TRIP980钢动态拉伸变形行为的影响
[A].中国金属学会.第十三届中国钢铁年会论文集
[C].北京:冶金工业出版社,2022.

Xu X, Liang X, Li C L, et al. Effect of strain rate on the dynamic tensile deformation behavior of δ-TRIP980 steel
[A]. Chinese Socirty for Metals. Proceedings of the 13th Annual China Steel Conference
[C].Beijing:Metallurgical Industry Press, 2022.


[4]徐勇,段星宇,陈帅峰,等.DP980高强钢静动态拉伸性能及本构模型构建
[J].塑性工程学报,2022,29(6):125-133.

Xu Y, Duan X Y, Chen S F, et al. Static and dynamic tensile properties and constitutive model construction of DP980 high-strength steel
[J]. Journal of Plasticity Engineering, 2022, 29(6):125-133.


[5]张伟,潘跃,刘华赛,等.应变速率对增强成形性双相钢性能影响分析
[J].钢铁,2022,57(4):123-129.

Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability
[J]. Iron and Steel, 2022, 57(4):123-129.


[6]徐超, 朱超群, 何燕霖,等. 不同应变速率下DP钢变形行为的微观机理研究
[J]. 上海金属, 2014, 36(3):1-5.

Xu C, Zhu C Q, He Y L, et al. Study on the microscopic deformation mechanism of DP steel at different strain rates
[J]. Shanghai Metals, 2014, 36(3):1-5.


[7]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法
[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].


[8]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统
[S].

GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems
[S].


[9]邓彬, 李庆芬, 吴远志,等. 高应变速率多向锻造对AZ31镁合金组织及耐腐蚀性能的影响
[J]. 锻压技术,2021,46(8): 7-11,25.

Deng B, Li Q F, Wu Y Z, et al. Influence of high strain rate multi-directional forging on microstructure and corrosion resistance property for AZ31 magnesium alloy
[J]. Forging & Stamping Technology, 2021,46(8): 7-11,25.


[10]Chen G, Huang L, Link T M,et al. Calibration and validation of GISSMO damage model for a 780 MPa third generation advanced high strength steel
[A]. SAE International.WCX SAE World Congress Experience
[C]. Detroit, 2020.


[11]郑鑫福,任鹏飞,郑崇嵩,等. HC260LAD+Z钢动态力学性能及其本构模型研究
[J]. 机电工程技术,2022,51(5):70-73,203. 

Zheng X F, Ren P F, Zheng C S, et al. Research on dynamic property and constitutive modeling for HC260LAD+Z steel
[J]. Mechanical & Electrical Engineering Technology, 2022, 51(5):70-73,203. 


[12]余立, 刘静, 葛锐,等. DP780双相钢在不同应变状态下的断裂特性及机理
[J]. 锻压技术, 2022, 47(10): 48-55.

Yu L, Liu J, Ge R, et al. Fracture characteristics and mechanism on DP780 dual-phase steel under different strain states
[J]. Forging & Stamping Technology, 2022, 47(10):48-55.


[13]潘利波,左治江,周文强,等. 双相钢的成形与断裂极限性能分析
[J]. 锻压技术,2021,46(7):185-189.

Pan L B,Zuo Z J,Zhou W Q,et al. Analysis on forming and fracture limit properties for dual phase steel
[J]. Forging & Stamping Technology,2021,46(7):185-189.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com