Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Constitutive equation on AlCoCrFeNi0.6 high entropy alloy based on double multiple nonlinear regression model
Authors: Liu Taiying1  Han Yingying2  Wang Lei3 
Unit: (1.Beijing Xinghang Electro-mechnical Equipment Co.  Ltd. Beijing 100074 China 2.Beijing Power Machinery Research  Institute Beijing 100072 China 3.Zhejiang Hangzhou Zhengcai Holding Group Co.  Ltd. Hangzhou 310000 China) 
KeyWords: high entropy alloy  rheological characteristics  constitutive equation  DMNR model  flow stress 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(6):258-264
Abstract:

 The hot compression test of AlCoCrFeNi0.6 high entropy alloy was carried out by hot compression machinery Gleeble-3500 at test temperatures of 1223, 1273, 1323 and 1373 K and strain rates of 0.001, 0.01, 0.1 and 1 s-1, and the relationship between flow stress σ and strain ε, temperature T and strain rate ε·  was explored. Then, the constitutive equation based on the double multipe nonlinear regression (DMNR) model was established. The results show that under the same strain rate, with the increasing of temperature, the flow stress shows a downward trend, and under the same temperature condition, the flow stress shows an increases trend with the increasing of strain rate. Therefore,AlCoCrFeNi0.6  high entropy alloy has obvious strain rate strengthening and high temperature softening phenomenon. Based on double multiple nonlinear regression (DMNR) model, the high-temperature constitutive equation of AlCoCrFeNi0.6 high entropy alloy  is established. Through comparative analysis, it is found that the established model has good prediction performance, and the average relative error is 9.94%.

Funds:
国防科技173计划技术领域基金(2021-JCJQ-JJ-0197)
AuthorIntro:
刘太盈(1987-),男,硕士,工程师
Reference:

 
[1]Otto F, Dlouhy A, Somsen C. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
[J]. Acta Materialia, 2013, 61(15): 5743-5755.



[2]Chen M R, Lin S J, Yeh J W, et al. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy
[J]. Metallurgical and Materials Transactions A, 2006, 37(5): 1363-1369.


[3]Yan Y, Gao W, Wang X, et al. Microstructures and compressive properties of AlxCoCrFeNi high entropy alloys prepared by arc melting and directional solidification
[J]. Materials Research Express, 2022, 9(1): 016510.


[4]Dbm A, Onsa B. A critical review of high entropy alloys and related concepts
[J]. Acta Materialia, 2017, 122: 448-511.


[5]Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
[J]. Nature, 2016, 534(7606): 227-230.


[6]Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys
[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218.


[7]Yeh J W. Recent progress in high-entropy alloys
[J]. European Journal of Control, 2006, 31(6): 633-648.


[8]Yuji I, Blazej G, Fritz K. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys
[J]. Materials Characterization, 2019, 147: 464-511.


[9]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
[A]. Proceedings of the 7th International Symposium on Ballistics
[C]. Netherlands, 1983.


[10]Sung J H, Kim J H, Wagoner R. A plastic constitutive equation incorporating strain, strain-rate, and temperature
[J]. International Journal of Plasticity, 2010, 26(12): 1746-1771.


[11]Samantaray D, Mandal S, Bhaduri A. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel
[J]. Computational Materials Science, 2009, 47(2): 568-576.


[12]Samantaray D, Mandal S, Bhaduri A. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel
[J]. Materials & Design, 2010, 31(2): 981-984.


[13]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations
[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.


[14]Samantaray D, Mandal S, Borah U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel
[J]. Materials Science and Engineering: A, 2009, 526(1): 1-6.


[15]Lin Y, Chen M S, Zhong J. Prediction of 42CrMo steel flow stress at high temperature and strain rate
[J]. Mechanics Research Communications, 2008, 35(3): 142-150.


[16]宋繁策, 李鉴霖, 韩金科, 等. AlFeCoNiMo0.2高熵合金热变形行为及热加工图
[J]. 精密成形工程, 2021, 13(6): 7-12.

Song F C, Li J L, Han J K, et al. Hot deformation behavior and processing map of AlFeCoNiMo0.2 high-entropy alloy
[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 7-12.


[17]梅金娜, 薛飞, 吴天栋, 等. FeCrNiMn高熵合金本构方程的建立
[J]. 材料导报, 2021, 35(S1): 6-11.

Mei J N, Xue F, Wu T D, et al. Establishment of constitutive equation of FeCrNiMn high entropy alloy
[J]. Materials Reports, 2021, 35(S1): 6-11. 


[18]彭需发, 李慧中, 梁霄鹏, 等. FeCoCrNiC0.05高熵合金的高温变形行为及动态软化机制
[J]. 湖南有色金属, 2020,(5): 54-59.

Peng X F, Li H Z, Liang X P, et al. FeCoCrNiC0.05 high-entropy alloy high temperature deformation behavior and dynamic softening mechanism PEN
[J]. Hunan Nonferrous Metals, 2020, (5): 54-59.


[19]Eleti R R, Bhattacharjee T, Zhao L, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy
[J]. Materials Chemistry and Physics, 2017, 210: 176-186.


[20]Ahmed M Z, Chadha K, Reddy S R, et al. Influence of process parameters on microstructure evolution during hot deformation of a eutectic high-entropy alloy (EHEA)
[J]. Metallurgical and Materials Transactions A, 2020, 51(12): 6406-6420.


[21]Zhang M, Hou J X, Yang H J, et al. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys
[J]. International Journal of Mineral Metallurgy and Materials, 2020, 27(10): 6-12.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com