Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Constitutive model on single vacuum 300M ultra-high strength steel based on friction correction
Authors: Zhang Haicheng1 2  Chang Chunyan3  Zeng Detao1  Zhou Jie2 
Unit: (1.China Erzhong Group Deyang Wahang Die Forging Co.  Ltd.  Deyang 618000 China   2.School of Materials Science and Engineering  Chongqing University  Chongqing 400044 China  3.Basic Teaching Department  Sichuan College of Architectural Technology  Deyang 618000 China) 
KeyWords: 300M ultra-high strength steel  rheological behavior  friction correction  constitutive model compression deformation 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(6):245-252
Abstract:

 To study the high temperature rheological behavior of single vacuum 300M ultra-high strength steel and formulate reasonable thermal processing parameters, the thermal compression tests were carried out under the conditions of strain rate of 0.001-10 s-1, and deformation temperature of 850-1200 ℃, and the relationship between rheological stress and deformation temperature, strain rate and deformation amount was studied. Then, considering the influence of friction on rheological stress during compression deformation process of cylindrical specimen, an Arrhenius constitutive model based on friction correction was established. The research results show that when the rheological stress of sample is measured by the thermal compression test, the friction between the upper and lower end surfaces of the sample and the indenter of the test machine cannot be ignored. After the experimental results are corrected by friction, the more accurate high-temperature rheological stress of materials is obtained. The material rheological stress is negatively correlated with the deformation temperature and positively correlated with the strain rate. In addition, the peak stress of the material has a high sensitivity to both the deformation temperature and the strain rate, but the sensitivity index to the strain rate is higher.

Funds:
四川省重大科技专项项目(2022ZDZX0040)
AuthorIntro:
张海成(1988-),男,硕士,高级工程师
Reference:

 
[1]张慧萍,王崇勋,杜煦.飞机起落架用300M超高强钢发展及研究现状
[J].哈尔滨理工大学学报,2011,16(6):73-76.


Zhang H P, Wang C X, Du X. Development and research status of 300M ultra-high strength steel for aircraft landing gear
[J]. Journal of Harbin University of Technology, 2011, 16 (6): 73-76.


[2]李铭.大型飞机起落架制造技术
[J].航空制造技术,2008,318(21):68-71.

Li M. Large aircraft landing gear manufacturing technology
[J]. Aviation Manufacturing Technology, 2008,318(21): 68-71.


[3]宋春艳. 300M飞机起落架外筒锻件生产过程中关键技术研究
[D].秦皇岛:燕山大学,2014.

Song C Y. Study of the Key Technology of Producing for 300M Aircraft Landing Gear Outer Cylinder Forging
[D]. Qinhuangdao:Yanshan University, 2014.


[4]冯军.大型民机起落架的发展趋势与关键技术
[J].航空制造技术,2009,324(2):52-54,56.

Feng J. Development trend and key technologies of large civil aircraft landing gear
[J]. Aviation Manufacturing Technology, 2009, 324(2): 52-54,56.


[5]王瑞. 超高强度钢制备工艺的关键技术研究
[D].沈阳:东北大学,2017.

Wang R. Research on Key Technologies of Ultra-High Strength Steel Preparation Process
[D]. Shenyang:Northeast University, 2017.


[6]Luo J, Li M Q, Liu Y G, et al. The deformation behavior in isothermal compression of 300M ultrahigh-strength steel
[J]. Materials Science and Engineering A, 2012, 534(2):314-322.


[7]赵振业,李志,刘天琦,等.探索新强韧化机制开拓超高强度钢新领域
[J].中国工程科学,2003,(9):39-42,54.

Zhao Z Y, Li Z, Liu T Q,et al. Exploring a new strengthening and toughening mechanism and opening up a new field of ultra-high strength steel
[J]. China Engineering Science, 2003, (9): 39-42,54.


[8]李杰,李志,颜鸣皋.高合金超高强度钢的发展
[J].材料工程,2007,287(4):61-65.

Li J, Li Z, Yan M G. Development of high alloy ultra-high strength steel
[J]. Materials Engineering, 2007,287(4): 61-65.


[9]石旭. 300M超高强钢高温本构模型的研究
[D]. 哈尔滨:哈尔滨理工大学,2015.

Shi X. Research on Constitutive Model of 300M Ultra-High Strength Steel at High Temperature
[D]. Harbin:Harbin University of Science and Technology, 2015.


[10]章晓婷,黄亮,李建军,等.300M高强钢高温流变行为及本构方程
[J].中南大学学报:自然科学版,2017,48(6):1439-1447.

Zhang X T, Huang L, Li J J, et al. High temperature rheological behavior and constitutive equation of 300M high strength steel
[J]. Journal of Central South University:Science and Technology, 2017,48 (6): 1439-1447.


[11]祁荣胜,景阳端,刘鑫刚,等. 300M高强钢热变形行为及其热加工图
[J].塑性工程学报,2016,23(2):130-135.

Qi R S, Jing Y D, Liu X G, et al. Hot deformation behavior and hot working diagram of 300M high strength steel
[J]. Journal of Plasticity Engineering, 2016,23 (2): 130-135.


[12]黄顺喆,厉勇,王春旭,等.300M钢的热变形行为研究
[J].热加工工艺,2010,39(20):25-28.

Huang S Z, Li Y, Wang C X, et al. Study on the hot deformation behavior of 300M steel
[J]. Hot Working Technology, 2010, 39 (20): 25-28.


[13]赵明杰,邓磊,孙朝远,等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展
[J].科学通报,2022,67(11):1036-1053.

Zhao M J, Deng L, Sun C Y, et al. Research progress on deformation mechanism and process of full process forging of large 300M high-strength steel components
[J]. Chinese Science Bulletin, 2022,67 (11): 1036-1053.


[14]赵明杰,黄亮,李昌民,等. 300M钢的热变形行为及热锻成形工艺研究现状
[J].精密成形工程,2020,12(6):16-27.

Zhao M J, Huang L, Li C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel
[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 16-27.


[15]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming
[J]. Journal of Materials Processing Technology, 2004, 152(2):136-143.


[16]Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834
[J]. Material Science Engineering A, 2005, 396(1-2):50-60.


[17]段园培,黄仲佳,余小鲁,等.基于摩擦修正的TB6合金流变应力行为研究及本构模型建立
[J].稀有金属,2014,38(2):202-209.

Duan Y P, Huang Z J, Yu X L, et al. Research on flow stress behavior of TB6 alloy based on friction correction and establishment of constitutive model
[J]. Chinese Journal of Rare Metals, 2014, 38 (2): 202-209.


[18]Sellars C M, Mctegart W J. On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


[19]Zener C, Hollomon J H . Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1):22-32.


[20]薛小伟. 300M钢大型锻坯热成形工艺研究
[D].长沙:湖南大学,2019.

Xue X W. Research on Hot Forming Process of 300M Steel Large Forging Blank
[D].Changsha: Hunan University, 2019.


[21]Xia Y F, Long S, Wang T Y, et al. A study at the workability of ultra-high strength steel sheet by processing maps on the basis of DMM
[J]. High Temperature Materials and Processes, 2017, 36(7): 657-667.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com