Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization on multi-objective process for zirconium alloy strip stamping
Authors: Yuan Jiajian1 Mao Jianzhong2 Zhang Xiaomin2 Lei Congyi3 Wang Ben4 
Unit: 1.College of Mechanical and Electrical Engineering  Hunan Communication Engineering Polytechnic  2.College of Mechanical and Vehicle Engineering  Hunan University  3.School of Intelligent Engineering and Intelligent Manufacturing  Hunan University of Technology and Business  4.State Nuclear Bao Ti Zirconium Industry Co.  Ltd. 
KeyWords: zirconium alloy strip  stamping  thinning and cracking  spring  rigid conves 
ClassificationCode:TG386
year,vol(issue):pagenumber:2023,48(7):93-99
Abstract:

 In order to reduce the risk of thinning and cracking during stamping for zirconium alloy strips, for the strip progressive stamping, its feature forming has the same stamping speed, blank holder force and friction coefficient, a simplified finite element model of strip was established, and the accuracy of finite element simulation was verified by physical test. Then, support vector machine was used to establish thinning rate prediction models for strip spring and rigid convexity feature respectively, and aiming at the multi-objective problem of overall strip thinning during forming process, based on non-dominated sorting genetic algorithm and entropy weight TOPSIS method, the Pareto front solutions and the comprehensive ordering of corresponding process parameters under three lubrication conditions were calculated. The results show that the thinning rate of rigid convex feature for strip is more sensitive to the change of process parameters than that of spring feature, and the optimum stamping process of strip varies obviously under different lubrication conditions. Thus, under the common no-lubrication condition, when the stamping speed is 134.41 mm·s-1 and the blank holder force is 7862 N, the strip progressive stamping has the minimum risk of thinning and cracking.

Funds:
湖南省教育厅资助科研项目(22C0951)
AuthorIntro:
作者简介:袁佳健(1991-),男,硕士,工程师 E-mail:danny66163@163.com 通信作者:毛建中(1963-),男,博士,教授 E-mail:maojianzhong66@163.com
Reference:

 [1]Kolesnik M, Aliev T, Likhanskii V. The modeling of the hydrogen solid solubility hysteresis in zirconium alloys[J]. Acta Materialia, 2019, 177:131-140.


[2]雷从一. 锆合金条带成形机理及冲制工艺优化[D]. 长沙:湖南大学, 2021.

Lei C Y. The Forming Mechanisms of Zirconium Alloy Strip and the Optimizations of the Stamping Process[D]. Changsha: Hunan University, 2021.

[3]邓振鹏. 新锆合金薄板带材的可冲性及冲制工艺优化[D]. 长沙:湖南大学, 2019.

Deng Z P. Punching Property and Punching Process Optimization of New Zirconium Alloy Sheet Strip[D]. Changsha: Hunan University, 2019.

[4]董晓传, 倪炀, 蔡玉俊, 等. 7075铝合金挡风梁热冲压成形减薄预测模型[J]. 中国有色金属学报, 2021, 31(3): 590-597.

Dong X C, Ni Y, Cai Y J, et al. Prediction model of hot stamping thinning of 7075 aluminum alloy windshield beam[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 590-597.

[5]王康康, 陈泽中, 江楠森, 等. 基于GABP的汽车行李箱盖内板冲压成形工艺优化[J]. 塑性工程学报, 2021, 28(9): 28-34.

Wang K K, Chen Z Z, Jiang N S, et al. Process optimization of stamping forming for inner panel of car trunk lid based on GABP[J]. Journal of Plasticity Engineering, 2021, 28(9): 28-34.

[6]Lei C Y, Mao J Z, Zhang  X M, et al. Crack prediction in sheet forming of zirconium alloys used in nuclear fuel assembly by support vector machine method[J]. Energy Reports, 2021, 7, 5922-5932.

[7]庞秋, 罗博峰, 王俊杰. 高强钢帽形梁零件冲压减薄预测分析[J]. 精密成形工程, 2022, 14(4): 55-60.

Pang Q, Luo B F, Wang J J. Prediction and analysis of stamping reduction of high strength steel cap beam[J]. Journal of Netshape Forming Engineering, 2022, 14(4): 55-60.

[8]施为钟, 龚红英, 王斌, 等. 基于响应面法与 NSGAII的汽车C柱零件成形质量多目标优化[J]. 塑性工程学报, 2021, 28(8): 30-37.

Shi W Z, Gong H Y, Wang B, et al. Process optimization of stamping forming for inner panel of car trunk lid based on GABP[J]. Journal of Plasticity Engineering, 2021, 28(8): 30-37.

[9]杨旭静, 冯小龙, 郑娟, 等. SVM和改进粒子群算法在冲压成形优化中的应用[J]. 汽车工程, 2015, 37(4): 485-489.

Yang X J, Feng X L, Zheng J, et al. Applications of SVM and improved particle swarm algorithm to sheet metal forming optimization[J]. Automotive Engineering, 2015, 37(4): 485-489.

[10]王雷鸣, 尹升华,闫泽鹏,等.基于SVM的粗骨料膏体性能预测及优选方法[J].中国有色金属学报,2022,32(11):3517-3527.

Wang L M, Yin S H, Yan Z P, et al. Study of coarse aggregate paste performance prediction and proportioning optimization method based on SVM[J]. The Chinese Journal of Nonferrous Metals,2022,32(11):3517-3527.

[11]Bao L, Zheng M L,Zhou Q, et al.Multiobjective optimization of partition temperature of steel sheet by NSGAII using response surface methodology[J]. Case Studies in Thermal Engineering, 2022, 31:101818.

[12]易茜, 柳淳,李聪波,等.基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J].中国机械工程,2022,33(13):1604-1612.

Yi Q, Liu C, Li C B, et al. A low carbon optimization decision method for gear hobbing process parameters driven by small sample data[J]. China Mechanical Engineering, 2022, 33(13): 1604-1612.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com