Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Joint noise reduction research on vibration signal for cold rolling mill frame based on EEMD-DWT method
Authors: Kang Jialin1 2  Xu Jiangli1  Yao Chuan′an2 
Unit: 1.College of Electronic Information Engineering  Zhengzhou City Vocational College 2.College of Mechanical and Electrical Engineering  Henan Agricultural University 
KeyWords: cold rolling mill  vibration signal  joint noise reduction  refactoring fault diagnosis 
ClassificationCode:TH206
year,vol(issue):pagenumber:2023,48(7):156-161
Abstract:

 In order to improve the fault diagnosis ability of cold rolling mill, comprehensively using the noise reduction technology of Ensemble Empirical Mode Decomposition (EEMD) algorithm and Discrete Wavelet Transformation(DWT), a joint noise reduction technology by EEMD-DWT was designed, and it was ensured that the useful features were fully preserved under the premise of removing noise. Then, the smooth curve signal was obtained by using EEMD-DWT mode for denoising, which showed excellent denoising effect. The application signal results show that when denoising with EEMD-DWT, it includes obvious impact characteristics, which effectively reduces the noise component in the region where the amplitude is near zero, and ensures that the original vibration characteristics are effectively reserved when the noise is fully removed. When DWT or EEMD method is used alone for denoising, a large amount of effective information is lost. When the EEMD-DWT joint noise reduction method is used for processing, the ideal noise reduction effect is achieved, and the useful parameters contained in the signal are fully preserved. Thus, this research can accurately identify different fault degrees of cold rolling mill, which has good theoretical support significance for improving the fault diagnosis level of similar mechanical transmission equipment.

Funds:
河南省高等学校重点科研项目(21B460003)
AuthorIntro:
作者简介:康家林(1988-),男,硕士,讲师 E-mail:xjl6323@163.com
Reference:

[1]胡璇, 李春, 叶柯华, 等. 改进灰狼算法优化支持向量机在风力机冷轧机故障诊断中的应用[J]. 机械强度, 2021, 43(6): 1289-1296.


Hu X, Li C, Ye K H, et al. Application of improved grey wolf algorithm optimized support vector machine in wind turbine gearbox fault diagnosis [J].  Journal of Mechanical Strength, 2021, 43(6): 1289-1296.

[2]陶九志, 黄润华, 马卫平. 基于IHPS/ISPS滤波和Hilbert变换解调的齿轮断齿故障诊断[J]. 机械强度, 2021, 43(6): 1303-1308.

Tao J Z, Huang R H, Ma W P. Fault diagnosis of gear tooth breaking based on IHPS/ISPS filter and hilbert transform demodulation [J]. Journal of Mechanical Strength, 2021, 43(6): 1303-1308.

[3]杨春晖, 徐霆. 振动监测技术在风电齿轮箱解体检修中的应用[J]. 上海电力大学学报, 2021, 37(S1): 57-60,63.

Yang C H, Xu T. Application of vibration monitoring technology in wind turbine gearbox disassembly and maintenance [J]. Journal of Shanghai University of Electric Power, 2021, 37(S1): 57-60,63.

[4]马芸婷, 张超, 王宇晨. PCASAE的齿轮箱故障诊断方法研究[J]. 机械设计与制造,2022,(3):144-147,152. 

Ma Y T, Zhang C, Wang Y C. Research on PCASAE gearbox fault diagnosis method [J]. Machinery Design & Manufacture,2022,(3):144-147,152.

[5]秦辞海, 赵睿智, 王月强, 等. 基于LSGAN和VMDMPEKELM的风机齿轮箱故障诊断[J]. 机械传动, 2021, 45(11): 153-160. 

Qin C H, Zhao R Z, Wang Y Q, et al. Fault diagnosis of fan gearbox based on LSGAN and VMDMPEKELM [J]. Journal of Mechanical Transmission, 2021, 45(11): 153-160.

[6]何雷, 刘溯奇. EMDAR谱分析和SVM的变速箱故障诊断[J]. 机械设计与制造, 2021(11): 56-59,64.

He L, Liu S Q. Gearbox fault diagnosis based on EMDAR spectrum analysis and SVM [J]. Machinery Design & Manufacture, 2021(11): 56-59,64.

[7]樊家伟, 郭瑜, 伍星, 等. 基于LSTM神经网络和故障特征增强的行星齿轮箱故障诊断[J]. 振动与冲击, 2021, 40(20): 271-277.

Fan J W, Guo Y, Wu X, et al. Fault diagnosis of planetary gearboxes based on LSTM neural network and fault feature enhancement [J]. Journal of Vibration and Shock, 2021, 40(20): 271-277.

[8]徐晋宏, 魏秀业, 贺妍, 等. 基于CEEMDAN样本熵与PNN的行星齿轮故障诊断[J]. 冷轧机与液压, 2021, 49(20): 179-183.

Xu J H, Wei X Y, He Y, et al. Fault diagnosis of planetary gear based on CEEMDAN sample entropy and PNN [J]. Machine Tool & Hydraulics, 2021, 49(20): 179-183.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com