Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot compression test and finite element simulation on 20 carbon steel/316L stainless steel composite material
Authors: Hu Jianhua Wang Xiaohua Chen Jianxun Gui Hailian Yang Sheng Li Jing 
Unit: College of Material Science and Engineering  Taiyuan University of Science and Technology 
KeyWords: longitudinal rib plate  reduction rate  friction factor  hole-type design  rolling 
ClassificationCode:TG335.5+9
year,vol(issue):pagenumber:2023,48(7):222-227
Abstract:

 For the 20 carbon steel/316L stainless steel composite material, the hot compression test was conducted by Gleeble-3500 thermal simulation testing machine combined with finite element software DEFORM-3D, the strain change trend and microstructure evolution laws were analyzed, and the Arrhenius constitutive model was established. During the test, the volume of carbon steel accounted for 2/3, the volume of stainless steel accounted for 1/3, the strain rate was 0.1-10 s-1, and the temperature was 1000-1100 ℃. By comparing the simulation and test results, it is found that there is a certain proportional relationship between the stress-strain curves of carbon steel and stainless steel bimetallic materials and the test results, and the deformation amount in the middle region of the composite material is greater than that at both ends. Through the simulation, it can be concluded that the average grain size of stainless steel is larger than that of carbon steel during the overall process. Due to certain differences between the test results and the simulation results, whether there is a change inside the object cannot be clearly seen on the outer surface of the object. So this simulation is necessary. 

Funds:
山西省自然科学基金资助项目(202203021221158);山西省重点研发计划(201903D121049)
AuthorIntro:
作者简介:胡建华(1977-),女,博士,副教授 E-mail:2005022@tyust.edu.cn 通信作者:王小花(1998-),女,硕士研究生 E-mail:S202114210083@stu.tyust.edu.cn
Reference:

[1]宋仁伯,项建英,刘良元,等.316L不锈钢的热变形抗力模型[J].机械工程材料,2010,34(6):85-88.


Song R B, Xiang J Y, Liu L Y, et al. Thermal deformation resistance model of 316L stainless steel[J]. Materials for Mechanical  Engineering,2010,34(6):85-88.

[2]魏栋,楚志兵,黄庆学,等.基于DEFORM3D的皮尔格冷轧不锈钢管有限元模拟及分析[J].塑性工程学报,2016,23(5):89-95.

Wei D, Chu Z B, Huang Q X, et al. Finite element simulation and analysis of pilger cold rolled stainless steel pipe based on DEFORM3D[J].Journal of Plasticity Engineering,2016, 23 (5): 89-95.

[3]韩栋,赵永庆.曾卫东,等.基于元胞自动机的TA15板材累积叠轧微观组织预测[J].稀有金属材料和工程,2021,50(10):3437-3445.

Han D, Zhao Y Q, Zeng W D, et al. Microstructures prediction of TA15 sheet rolling based on cellular automata [J]. Rare Metal Materials and Engineering, 2021,50(10):3437-3445.

[4]Wang S, Zhao G H, Li Y G,et al. Effect of different reduction rates on the nearinterfacial structure of pressed 304/Q235 composite plate[J].Materials Research Express,2020,7(6): 066531.

[5]黄晓斌.冶金复合无缝钢管在工业管道中的应用[J].特钢技术,2013, 19(1):1-5,18.

Huang X  B. Application of metallurgical composite seamless steel pipe in industrial pipeline[J]. Special Steel Technology,2013, 19(1):1-5,18.

[6]Liu B X, An Q, Yin F X, et al. Interface formation and bonding mechanisms of hotrolled stainless steel clad plate[J]. Journal of Materials Science,2019,54:11357-11377.

[7]Yang X W,Li W Y,Feng Y, et al. Physical simulation of interfacial microstructure evolution for hot compression bonding behavior in linear friction welded joints of GH4169 superalloy[J]. Materials & Design,2016,104:436-452.

[8]杨韵琴,张文玮,谭元标,等.TB8钛合金热压缩过程中动态再结晶组织的模拟[J].热处理,2021,36(4): 6-11.

Yang Y Q, Zhang W W, Tan Y B, et al. Simulation of dynamic recrystallization microstructure of TB8 titanium alloy during hot compression [J]. Heat Treatment,2021,36(4):6-11.

[9]王海宁,李萍,张清.Mg5Sm2Gd合金的热压缩行为[J/OL].稀土:1-7[2023-04-14].DOI:10.16533/J. CNKI.15-1099/TF.20230013.

Wang H N, Li P, Zhang Q. Hot compression behavior of Mg5Sm2Gd alloy [J/OL]. Chinese Rare Earths:1-7[2023-04-14].DOI:10.16533/J.CNKI.15-1099/TF.20230013.

[10]王天胜,李鑫,鲁世强,等.TC21钛合金热压缩失稳变形组织模拟和预测[J].塑性工程学报,2016,23(5):144-148.

Wang T S, Li X, Lu S Q, et al. Simulation and prediction of deformation microstructure of TC21 titanium alloy under hot compression [J]. Journal of Plasticity Engineering, 2016, 23 (5):144-148.

[11]梅瑞斌,史现利,包立,等.不同加热轧制 AZ91 镁合金带材数值模拟及试验验证[J].中国冶金,2022,32(1):112-120. 

Mei R B, Shi X L, Bao L, et al. Numerical simulation and experimental verification of AZ91 magnesium alloy strip rolling under different heating conditions [J]. China Metallurgy, 2022,32(1):112-120.

[12]Hu J H, Yang S, Huang Y L, et al. A new correction theory and verification on the reducing rate distribution for seamless tube stretchreducing process[J].Crystals,2022,12(9):1296-1296.

[13]吕泽华,Agamuradov D,张志雄,等.热轧双覆层不锈钢 /碳钢复合板组织与性能研究[J].塑性工程学报,2020,27(7): 168-175.

Lyu Z H,Agamuradov D,Zhang Z X,et al. Research on microstructure and properties of double cladding stainless steel/carbon steel clad plate by hot rolling [J].Journal of Plasticity Engineering,2020,27(7): 168-175.

[14]Yang Y H, Jiang Z Z, Li S X, et al. Hot deformation behavior and microstructure evolution of stainless steel/carbon steel laminated composites[J].Materials Science and Engineering A,2022,(842):142994.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com