Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature constitutive model for superalloy GH3536 by selective laser melting
Authors: meltingBai Jie1  Ma Rui1  Wang Yajun1  Li Qinghua2 
Unit: 1.Beijing Power Machinery Research Institute  2.School of Materials Science and Engineering  Northwest Polytechnic University 
KeyWords: superalloy GH3536  selective laser melting  constitutive equation  Arrhenius model plastic deformation 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(7):234-241
Abstract:

 To study the plastic deformation behavior of selective laser melting superalloy at high temperature, the thermal simulation compression test of HIP state superalloy GH3536 prepared by selective laser melting was carried out, and the true stress-true strain curves at high temperature under different deformation conditions (the deformation temperatures of 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1) were obtained. Then, the load response laws of the material under high temperature conditions were studied, and the high temperature constitutive model of the material based on Arrhenius equation was established. The results show that the peak stress increases with the increasing of strain rate and decreases with the increasing of deformation temperature, and the maximum peak stress is 592.8 MPa. Based on Arrhenius equation, the high temperature constitutive equation for superalloy GH3536 in HIP stabe is established, which can predict the stress of the material well, and the average relative error of the overall prediction is 9.42%. Through microstructure observation, it is found that the microstructure of the alloy is elongated during high temperature deformation process, the obvious trace of dynamic recrystalization con be observed.

Funds:
国家重点研发计划(2018YFB1106405)
AuthorIntro:
作者简介:白洁(1988-),男,博士,高级工程师 E-mail:baishuai031@163.com
Reference:

[1]郑寅岚, 何艳丽, 陈晓晖,等. 选区激光熔化成形GH3536合金的高温拉伸性能及断裂行为分析[J]. 中国激光, 2020, 47(8):106-115.


Zheng Y L, He Y L, Chen X H, et al. Elevatedtemperature tensile properties and fracture behavior of GH3536 alloy formed via selective laser melting[J]. Chinese Journal of Lasers,2020, 47(8):106-115.

[2]孙闪闪, 滕庆, 程坦,等. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究[J]. 机械工程学报,2020, 56(21): 208-218.

Sun S S, Teng Q, Cheng T, et al. Influence of heat treatment on microstructure evolution of GH3536 superalloy fabricated by selective laser melting [J]. Journal of Mechanical Engineering,2020, 56(21): 208-218.

[3]薛珈琪, 陈晓晖, 雷力明. 激光选区熔化GH3536合金组织对力学性能的影响[J]. 激光与光电子学进展, 2019, 56(14): 163-169.

Xue J Q, Chen X H, Lei L M. Effects of microstructure on mechanical properties of GH3536 alloy fabricated by selective laser melting [J]. Laser & Optoelectronics Progress,2019, 56(14): 163-169.

[4]Konda G P, Sri K, Jürgen E. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-Selection guidelines[J]. Materials, 2017, 10(6):672-672.

[5]Ma P, Jia Y, Prashanth K G, et al. Microstructure and phase formation in Al20Si5Fe3Cu1Mg synthesized by selective laser melting[J]. Journal of Alloys and Compounds, 2016, 657: 430-435.

[6]Sanz C, Navas V G. Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments[J]. Journal of Materials Processing Technology, 2013, 213(12): 2126-2136.

[7]Bertrand P. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253: 8064-8069.

[8]Trosch T, Strosner J, Volkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters, 2016, 164: 428-431.

[9]解文龙,蒋为豪,邓偲瀛,等. 汽车发动机用铸造铝合金热压缩变形行为及唯象本构方程[J]. 塑性工程学报, 2020, 27(9): 147-152.

Xie W L, Jiang W H, Deng S Y, et al. Hot compression deformation behavior and phenomenological constitutive equation of cast aluminum alloy for automobile engine [J]. Journal of Plasticity Engineering, 2020, 27(9): 147-152.

[10]Liu Y, Li M, Ren X W, et al. Flow stress prediction of Hastelloy C276 alloy using modified ZerilliArmstrong, JohnsonCook and Arrheniustype constitutive models [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3031-3042.

[11]冯怡爽, 何霁, 韩国丰,等. 金属板材塑性本构关系的深度学习预测方法及建模[J]. 塑性工程学报, 2021, 28(6): 34-46.

Feng Y S, He J, Han G F, et al. Deep learning predicting method and modeling of plastic constitutive relation of sheet metal [J]. Journal of Plasticity Engineering,2021, 28(6): 34-46.

[12]何龙, 张冉阳, 赵刚要,等. 基于BP神经网络的GH5188高温合金本构模型[J]. 特种铸造及有色合金, 2021, 41(2): 223-226.

He L, Zhang R Y, Zhao G Y, et al. Constitutive model of GH5188 superalloy based on BP neural network [J]. Special Casting & Nonferrous Alloys, 2021, 41(2): 223-226.

[13]刘昭昭, 王淼, 刘延辉. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究[J]. 航空材料学报, 2021, 41(6): 44-50.

Liu Z Z,Wang M, Liu Y H. Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test [J]. Journal of Aeronautical Materials, 2021, 41(6): 44-50.

[14]罗锐, 陈乐利, 程晓农,等. 高温合金Inconel 617B的热变形及动态再结晶行为[J]. 压力容器, 2020, 37(10): 7-14.

Luo R, Chen L L, Cheng X N, et al. Thermal deformation and dynamic recrystallization behavior of inconel 617B superalloy [J]. Pressure Vessel Technology, 2020, 37(10): 7-14.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com