Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Dynamic recrystallization behavior for superalloy FGH4096
Authors: Liu Jianxiao  Jiang Chao  Zhai Yuewen  Zhou Leyu  Jin Hong 
Unit: Beijing Research Institute of Mechanical and Electrical Technology Co. Ltd. CAM 
KeyWords: superalloy FGH4096  thermal compression deformation  dynamic recrystallization  average grain size high temperature deformation behavior 
ClassificationCode:TG166.7
year,vol(issue):pagenumber:2023,48(7):242-248
Abstract:

 Aiming at the refinement and homogenization control of the recrystallized microstructure in the vacuum isothermal forging process, the thermal simulation compression tests were conducted on Gleeble3500 thermal simulation tester, and the high temperature deformation behavior of alloy under the conditions of deformation temperature of 1020-1140 ℃, strain rate of 0.001-1 s-1 and strain amount of 60% was analyzed. Then, the dynamic recrystallization volume fraction model and average grain size model of superalloy FGH4096 were constructed, and the evolution laws of dynamic recrystallization microstructure during the thermal deformation process of the alloy was revealed. Furthermore, the optimal process parameters were confirmed, and the control of microstructure was realized by controlling the processing window. The experimental results show that the critical strain of the material decreases with increasing of the deformation temperature and increases with increasing of the strain rate. The grain size of the original structure is Grade 6, when lnZ is in the rang of 70.32-75.57, the dynamic recrystallization percentage is more than 90%. When lnZ is in the range of 72.62-74.93, the grain size of recrystallization average grain size is above Grade 8, resulting in uniform and fine structure. 

Funds:
中国机械科学研究总院技术发展基金项目
AuthorIntro:
作者简介:刘剑箫(1992-),女,硕士,工程师 E-mail:woshiliujianxiao@126.com 通信作者:姜超(1979-),男,博士,研究员 E-mail:jiangchao@139.com
Reference:

[1]Liu C Z, Liu F, Huang L,et al.Effect of hot extrusion and heat treatment on microstructure of nickelbase superalloy [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2544-2553.


[2]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review[J]. Materials Science & Engineering A, 1997,238(2):219-274.

[3]宁永权, 李辉, 姚泽坤, 等. FGH96高温合金的再结晶组织特征[J]. 稀有金属材料与工程, 2016, 45(5): 1225-1229.

Ning Y Q, Li H, Yao Z K, et al. Recrystallization organization characteristics of FGH96 hightemperature superalloy[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1225-1229.

[4]李福林,付锐,白云瑞,等.初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J/OL].金属学报:1-17[2023-06-13].http://kns.cnki.net/kcms/detail/21.1139.TG.20230322.1056.018.html

Li F L, Fu R, Bai Y R, et al. Influence of initial grain size and strengthening on the thermal deformation behavior and recrystallization of GH4096 high temperature superalloy[J/OL]. Acta Metallurgica Sinica: 1-17[2023-06-13].http://kns.cnki.net/kcms/detail/21.1139.TG.20230322.1056.018.html

[5]谢兴华, 姚泽坤, 宁永权, 等. FGH4096粉末高温合金的热变形行为[J]. 稀有金属材料与工程, 2012, 41(1): 82-86.

Xie X H, Yao Z K, Ning Y Q, et al. Thermal deformation behavior of FGH4096 powdered hightemperature superalloy[J]. Rare Metal Materials and Engineering, 2012, 41(1): 82-86.

[6]刘建涛, 张义文, 陶宇, 等. FGH96合金动态再结晶行为的研究[J]. 材料热处理学报, 2006,(5): 46-50,132.

Liu J T, Zhang Y W, Tao Y, et al. Study of dynamic recrystallization behavior of FGH96 superalloy[J]. Transactions of Materials Heat Treatment, 2006,(5): 46-50,132.

[7]黄钲钦, 王岩, 刘敏学, 等. 变形参数对FGH96合金热机械处理组织与性能的影响[J]. 中国有色金属学报, 2021, 31(7): 1842-1855.

Huang J Q, Wang Y, Liu M X, et al. Influence of deformation parameters on the microstructure and properties of thermomechanically treated FGH96 alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1842-1855.

[8]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5): 684-691.

[9]万志鹏, 孙宇, 胡连喜, 等. TiAl基合金动态再结晶临界模型建立[J]. 稀有金属材料与工程, 2018, 47(3): 835-839.

Wan Z P, Sun Y, Hu L X, et al. Establishment of a critical model for dynamic recrystallization of TiAlbased alloys[J]. Rare Metal Materials and Engineering, 2018, 47(3): 835-839.

[10]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3-4): 187-194.

[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[12]吴志强, 邓偲瀛, 刘欢, 等. Zr1.0Sn1.0Nb0.1Fe合金热变形行为及动态再结晶模型建立[J]. 稀有金属材料与工程, 2022, 51(7): 2599-2607.

Wu Z Q, Deng S Y, Liu H, et al. Thermal deformation behavior and dynamic recrystallization modeling of Zr-1.0Sn-1.0Nb-0.1Fe alloy[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2599-2607.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com