Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of process parameters and dynamic recrystallization on void evolution and analysis on microscopic damage mechanism for as-cast 42CrMo steel in high temperature tensile deformation
Authors: Chen Yuanyuan1  Qi Huiping2  Li Yongtang2 Liu Huiling1 
Unit: 1. College of Mechanical Engineering  Jinzhong University 2. College of Materials Science and Engineering  Taiyuan University of Science and Technology 
KeyWords: as-cast 42CrMo steel  dynamic recrystallization  fracture microstructure void evolution  inclusion 
ClassificationCode:TG333
year,vol(issue):pagenumber:2023,48(8):243-252
Abstract:

 The high-temperature tensile experiments of as-cast 42CrMo steel were conducted by thermal simulation experimental machine, and the relationships between microstructures at the fracture and near the fracture, void evolution and temperature, strain rate and strain were analyzed. Then, the influences of process parameters and dynamic recrystallization behavior on void evolution were discussed, and the microscopic damage mechanism of as-cast 42CrMo steel was studied. The results show that the initiation, growth and aggregation of viods in the high-temperature tensile deformation can be inhibited by controlling the deformation temperature of as-cast 42CrMo steel at 1423-1473 K and controlling the strain rate and strain. When dynamic recrystallization behavior occurs, the micro-voids are not easy to nucleate and grow, the spacing of aggregation between voids is reduced, and the fracture strain is increased. In the process of high-temperature tensile deformation of as-cast 42CrMo steel,the fall off or break of inclusions such as silica oxide, manganese sulfide, aluminum oxide and calcium oxide leads to void nucleation, and the nucleation can also occur between martensite grains.

Funds:
国家自然科学基金资助项目(51875383,51575371);山西省高校科技创新项目(2020L0579)
AuthorIntro:
作者简介:陈园园(1983-),女,博士,讲师,E-mail:123042922@qq.com;通信作者:齐会萍(1974-),女,博士,教授,E-mail:qhp9974@tyust.edu.cn
Reference:

[1]Deng J, Lin Y C, Li S S, et al. Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy [J]. Materials & Design, 2013, 49:209-219.


[2]尚晓晴.316LN钢空洞损伤的微观机理与热变形断裂准则的研究[D].上海:上海交通大学, 2019.

Shang X Q. Research on the Micro-mechanics of Void Damage and the Modeling of Ductile Fracture for Hot Deformation of the 316LN Steel [D]. Shanghai: Shanghai Jiao Tong University, 2019.[3]Spitzig W A, Smelser R E, Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities [J]. Acta Metallurgica, 1988, 36(5):1201-1211.

[4]Misra R D K, Thompson S W, Hylton T A, et al. Microstructures of hot-rolled high-strength steels with significant differences in edge formability [J]. Metallurgical and Materials Transactions A, 2001, 32:745-760.

[5]Barnby J T. The initiation of ductile failure by fractured carbides in an austenitic stainless steel [J]. Acta Metallurgica,1967, 15(5):903-909.

[6]Tanguy B, Besson J, Piques R, et al. Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part I: Experimental results [J]. Engineering Fracture Mechanics, 2005, 72(1):49-72.

[7]Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures [J]. Metallurgical and Materials Transactions B, 2001, 32:205-221.

[8]Morito S, Huang X, Furuhaar T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Materialia, 2006, 54(19):5323-5331.

[9]Wallin K, Saario T, Trrnen K. Statistical model for carbide induced brittle fracture in steel [J]. Metal Science, 1984, 18(1):13-16.

[10]刘晓燕,柳奎君,杨西荣,等.超细晶纯钛疲劳裂纹扩展及裂纹尖端组织演变[J].稀有金属,2022,46(7):882-888.

Liu X Y, Liu K J, Yang X R,et al. Fatigue crack growth and crack tip microstructure evolution of ultrafine grained pure titanium[J]. Chinese Journal of Rare Metals,2022,46(7):882-888.

[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[12]李贵军. 韧性断裂的细观机制和Ⅰ-Ⅱ复合型断裂准则的研究[D]. 杭州:浙江大学,1991.

Li G J. Study on Mesoscopic Mechanism of Ductile Fracture and Ⅰ-Ⅱ Composite Fracture Criterion [D]. Hangzhou: Zhejiang University, 1991.

[13]Suzuki H G, Nishimura S, Imamura J, et al. Hot ductility in steels in the temperature range between 900 and 600 ℃[J]. Tetsu-to-Hagane, 1981, 67(8): 1180-1189.

[14]Hug E, Martinez M, Chottin J. Temperature and stress state influence on void evolution in a high-strength dual-phase steel [J]. Materials Science and Engineering: A, 2015, 626:286-295.

[15]Semiatin S L, Seetharaman V, Ghosh A K, et al. Cavitation during hot tension testing of Ti-6Al-4V [J]. Materials Science and Engineering: A,1998, 256(1-2): 92-110.

[16]Erdogan M. The effect of new ferrite content on the tensile fracture behaviour of dual phase steels [J]. J. Mater. Sci., 2002, 37:3623-3630.

[17]Garrison W M, Moody N. Ductile fracture [J]. Journal of Physics and Chemistry of Solids, 1987, 48:1035-1074.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com