Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature rheological behavior and hot processing properties on hydrogenated Ti65 titanium alloy
Authors: Shao Guangbao1  Hu Jin2 Zhan Keqin1  Xi Guoqing1 Tian Zhuang2  Zuo Pei1 Deng Lei2 Li Wenbin2 
Unit: 1. Hubei Tri-Ring Forging Co.  Ltd. 2. State Key Laboratory of Material Processing and Die and  Mould Technology  Huazhong University of Science and Technology 
KeyWords: hydrogenated Ti65 titanium alloy rheological behavior constitutive equation hot processing map hydrogen content 
ClassificationCode:TG316
year,vol(issue):pagenumber:2023,48(8):253-260
Abstract:

 Ti65 titanium alloy has excellent high-temperature strength, hot stability and creep resistance, but its hot forming temperature is high and deformation resistance is large. As a high-temperature plasticizing process of titanium alloy, hot hydrogen treatment can significantly reduce the deformation resistance of Ti65 titanium alloy during high-temperature forming and improve its hot processing properties. Therefore, in order to study the influence of hydrogen content on the high-temperature rheological behavior and hot processing properties of Ti65 titanium alloy and explore the optimal hydrogen content and the forming process windows of Ti65 titanium alloy, hot compression experiments were carried out on Ti65 titanium alloy samples under different hydrogen contents. The results show that when hydrogenated Ti65 titanium alloy is deformed at the temperature range of 790-940 ℃, the optimal hydrogen content (mass fraction) is 0.25%, and the peak stress decreases by about 66.8% compared with the non-hydrogenated titanium alloy. Based on the true stress-true strain curve data, the Arrhenius constitutive equation of Ti65 titanium alloy with hydrogen content of 0.25% was established, and the hot processing maps of Ti65 titanium alloy under the conditions of the true strains of 0.2, 0.4 and 0.6 were also established. The research finds that when Ti65 titanium alloy is deformed at the temperature of 840-880 ℃ and the strain rate of greater than 0.01 s-1, the instability phenomenon occurs, and with increasing of the strain, the unstable region shrinks, while deformed at the temperature of 790-840 ℃ and the strain rate of 0.01-1 s-1, it has good hot processing properties.  

Funds:
湖北省重点研发计划(2020BAB040)
AuthorIntro:
作者简介:邵光保(1979-),男,工学学士,高级工程师,E-mail:13871609838@163.com
Reference:

[1]刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.


Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.

[2]洪小英, 李亮亮, 王乐. 高温钛合金航空发动机叶盘锻造变形均匀性研究[J]. 塑性工程学报, 2022, 29(9): 88-94.

Hong X Y, Li L L, Wang L. Study on forging deformation uniformity of high-temperature titanium alloy aero-engine blade disc[J]. Journal of Plasticity Engineering, 2022, 29(9): 88-94.

[3]徐全斌, 刘诗园. 国外航空航天领域钛及钛合金牌号及应用[J]. 世界有色金属, 2022,(16): 96-99.

Xu Q B, Liu S Y. Grades of titanium and titanium alloys developed in western countries and their applications in the aerospace industry[J]. World Nonferrous Metals, 2022,(16): 96-99.

[4]Zhao Q Y, Sun Q Y, Xin S W, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering: A, 2022,845: 143260.

[5]Gloria A, Montanari R, Richetta M, et al. Alloys for aeronautic applications: State of the art and perspectives[J]. Metals, 2019, 9(6): 662.

[6]杨冬雨, 付艳艳, 惠松骁,等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011, 35(4): 575-580.

Yang D Y, Fu Y Y, Hui S X, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580.

[7]Khorev A I, Khorev M A. Titanium alloys: Application and perspectives of development[J]. Titan, 2005, (1): 40-53.

[8]Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60[J]. Acta Materialia, 2017, 131: 305-314.

[9]王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1-26.

Wang Q J, Liu J R, Yang R. High temperature titanium alloy: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.

[10]Li X F, Jiang J, Wang S, et al. Effect of hydrogen on the microstructure and superplasticity of Ti-55 alloy[J]. International Journal of Hydrogen Energy, 2017, 42(9): 6338-6349.

[11]Zong Y Y, Huang S S, Feng Y J, et al. Hydrogen induced softening mechanism in near alpha titanium alloy[J]. Journal of Alloys and Compounds, 2012, 541: 60-64.

[12]Zhang X M, Zhao Y Q, Zeng W D. Effect of hydrogen on the superplasticity of Ti600 alloy[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4354-4360.

[13]Ma T F, Chen R R, Zheng D S, et al. Hydrogen-induced softening of Ti-44Al-6Nb-1Cr-2V alloy during hot deformation[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8329-8337.

[14]Zong Y Y, Shan D B, Lyu Y, et al. Effect of 0.3wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3936-3940.

[15]Han Y F, Zeng W D, Qi Y L, et al. Optimization of forging process parameters of Ti600 alloy by using processing map[J]. Materials Science and Engineering: A, 2011, 529: 393-400.

[16]Ghasemi E, Zarei-Hanzaki A, Farabi E, et al. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development[J]. Journal of Alloys and Compounds, 2017, 695: 1706-1718.

[17]Jia W J, Zeng W D, Zhou Y G, et al. High-temperature deformation behavior of Ti60 titanium alloy[J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.

[18]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

[19]Sellars C M, Tegart W J M G. Hot workability[J]. International Materials Reviews, 1972, 17(1): 1-24.

[20]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com