Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:In-situ experimental investigation on austenite grain evolution in Aermet100 steel during high temperature holding process
Authors: Jiang Qiao1  Zhao Mingjie2  Zhang Jian1  Su Yang2  Li Changmin2  Ban Yijie2  Zhao Junfei2  Huang Liang2   Sun Chaoyuan3  Li Pengchuan3  Li Jianjun2 
Unit: 1. Daye Special Steel Co. Ltd. 2. State Key Laboratory of Materials Processing and Die & Mould Technology  School of Materials Science and Engineering  Huazhong University of Science and Technology 3. China National Erzhong Group Deyang Wanhang Die Forging Co. Ltd. 
KeyWords: ultra-high strength steel  in-situ experiment  heating rate  grain evolution  grain growth model 
ClassificationCode:TG142.33
year,vol(issue):pagenumber:2023,48(8):261-267
Abstract:

 The microstructure evolution of materials during the heating and holding process will affect the subsequent deformation process. Therefore, in order to realize the effective control of microstructure during the hot deformation process of material, the austenite grain evolution law of Aermet100 steel during the heating and holding process was studied in-situ by high temperature laser confocal equipment. The results show that the austenite grain size increases with the decreasing of heating rate and the increasing of holding temperature and the holding time. Compared with the heating rate and holding time, the holding temperature has a more significant effect on the austenite grain size. 1000 ℃ is the critical temperature for the austenite grain growth of Aermet100 steel. When the holding temperature is lower than 1000 ℃, the austenite grain size is smaller, and when the holding temperature is higher than 1000 ℃, the austenite grain size increases significantly. Based on the statistical grain size, two austenite grain growth models coupled with the effects of heating rate, holding temperature and holding time were proposed. The predicted values of the two models are in good agreement with the experimental values, which indicates that the two established grain growth models are reliable. 

Funds:
湖北省重点研发计划(2022BAA024)
AuthorIntro:
作者简介:蒋乔(1971-),男,学士,高级工程师,E-mail:369876197@qq.com;通信作者:黄亮(1981-),男,博士,教授,E-mail:huangliang@hust.edu.cn
Reference:

[1]赵明杰, 邓磊, 孙朝远, 等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展 [J]. 科学通报, 2022, 67 (11): 1036-1053.


Zhao M J, Deng L, Sun C Y, et al. Advances on the deformation mechanism and forging technology of 300M high-strength steel heavy components in the whole forging process [J]. Chinese Science Bulletin, 2022, 67 (11): 1036-1053.

[2]赵明杰, 黄亮, 李昌民, 等. 300M钢的热变形行为及热锻成形工艺研究现状 [J]. 精密成形工程, 2020, 12 (6): 16-27.

Zhao M J, Huang L, Li C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel [J]. Journal of Netshape Forming Engineering, 2020, 12 (6): 16-27.

[3]赵明杰, 黄亮, 李建军, 等. 300M钢热扭转变形条件下的变形行为研究 [J]. 塑性工程学报, 2020, 27 (11): 159-166.

Zhao M J, Huang L, Li J J, et al. Deformation behaviors of 300M steel under hot torsion [J]. Journal of Plasticity Engineering, 2020, 27 (11): 159-166.

[4]Chamanfar A, Chentouf S M, Jahazi M, et al. Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel [J]. Journal of Materials Research and Technology, 2020, 9 (6): 12102-12114.

[5]Zhao M J, Huang L, Li C M, et al. Investigation and modeling of austenite grain evolution for a typical high-strength low-alloy steel during soaking and deformation process [J]. Acta Metallurgica Sinica:English Letters, 2022, 35 (6): 996-1010.

[6]Zhao F, Hu H, Liu X H, et al. Effect of billet microstructure and deformation on austenite grain growth in forging heating of a medium-carbon microalloyed steel [J]. Journal of Alloys and Compounds, 2021, 869: 159326.

[7]Chen R C, Zheng Z Z, Li J J, et al. In situ investigation of grain evolution of 300M steel in isothermal holding process [J]. Materials, 2018, 11 (10): 1862.

[8]Zhang Y, Li X H, Liu Y C, et al. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling [J]. Materials Characterization, 2020, 169: 110612.

[9]Su F Y, Liu W L, Wen Z. Three-dimensional cellular automaton simulation of austenite grain growth of Fe-1C-1.5Cr alloy steel [J]. Journal of Materials Research and Technology, 2020, 9 (1): 180-187.

[10]Quan G Z, Zhang P, Ma Y Y, et al. Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons [J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (9): 2435-2448.

[11]张一帆, 朱晓飞, 周舸, 等. A100钢的热变形行为及加工图 [J]. 精密成形工程, 2022, 14 (2): 88-94.

Zhang Y F, Zhu X F, Zhou K, et al. Hot deformation behavior and processing map of A100 steel [J]. Journal of Netshape Forming Engineering, 2022, 14 (2): 88-94.

[12]钱芳, 王忠堂. AerMet100超高强度钢的热变形行为及本构模型研究 [J]. 热加工工艺, 2018, 47 (14): 88-90, 96.

Qian F, Wang Z T. Study on thermal deformation behavior and constitutive model of AerMet100 ultra high strength steel [J]. Hot Working Technology, 2018, 47 (14): 88-90, 96.

[13]孙朝远, 谢静, 苗小浦, 等. Aermet100超高强度钢热变形中的动态再结晶行为研究 [J]. 热加工工艺, 2017, 46 (20): 112-115.

Sun C Y, Xie J, Miao X P, et al. Research on dynamic recrystallization behavior of Aermet100 ultra-high strength steel during hot deformation [J]. Hot Working Technology, 2017, 46 (20): 112-115.

[14]Zhao Z L, Min X N, Xu W X, et al. Dynamic recrystallization models of AerMet100 ultrahigh strength steel during thermo-mechanical processing [J]. Rare Metal Materials and Engineering, 2020, 49 (10): 3285-3293.

[15]乔慧娟, 李付国, 冀国良, 等. Aermet100钢高温变形行为及热加工图研究 [J]. 稀有金属材料与工程, 2014, 43 (4): 926-931.

Qiao H J, Li F G, Ji G L, et al. Deformation behavior at elevated temperature and processing map of Aermet100 steel [J]. Rear Metal Materials and Engineering, 2014, 43 (4): 926-931.

[16]王鑫, 董洪波, 邹忠波, 等. AerMet100钢的热变形显微组织演变及动态再结晶行为 [J]. 特种铸造及有色合金, 2016, 36 (2): 121-125.

Wang X, Dong H B, Zou Z B, et al. Microstructure evolution and dynamic recrystallization behavior of hot deformed Aermet100 steel [J]. Special Casting & Nonferrous Alloys, 2016, 36 (2): 121-125.

[17]Zhao M J, Huang L, Zeng R, et al. In-situ observations and modeling of metadynamic recrystallization in 300M steel [J]. Materials Characterization, 2020, 159: 109997.

[18]Zhao M J, Huang L, Zeng R, et al. In-situ observations and modeling of static recrystallization in 300M steel [J]. Materials Science and Engineering: A, 2019, 765: 138300.

[19]Liu F, Xu G, Zhang Y L, et al. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20 (11): 1060-1066.

[20]Li M Y, Yao D, Yang L, et al. Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27 (11): 1508-1516.

[21]Banerjee K, Militzer M, Perez M, et al. Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel [J]. Metallurgical and Materials Transactions A, 2010, 41 (12): 3161-3172.

[22]Rudnizki J, Zeislmair B, Prahl U, et al. Prediction of abnormal grain growth during high temperature treatment [J]. Computational Materials Science, 2010, 49 (2): 209-216.

[23]Zhang S S, Li M Q, Liu Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel [J]. Materials Science and Engineering: A, 2011, 528 (15): 4967-4972.

[24]Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels [J]. Materials & Design, 2008, 29 (9): 1840-1844.

[25]Ruan J J, Ueshima N, Oikawa K. Phase transformations and grain growth behaviors in superalloy 718 [J]. Journal of Alloys and Compounds, 2018, 737: 83-91.

[26]Xu Y W, Tang D, Song Y, et al. Prediction model for the austenite grain growth in a hot rolled dual phase steel [J]. Materials & Design, 2012, 36: 275-278.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com