Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on thermal deformation behavior and constitutive equation of 2195 Al-Li alloy
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2023,48(9):239-247
Abstract:

 Using thermal simulation testing machine Gleeble-3800, the homogenized 2195 Al-Li alloy was subjected to thermal compression deformation at the deformation temperature of 340-500 ℃ and the strain rate of 0.001-10 s-1, the influence of friction on the rheological stress was investigated, the rheological stress constitutive equation was established, and the rheological stress of 2195 Al-Li alloy considering strain compensation and the rheological stress after friction correction were compared and analyzed. The results show that the dendrite segregation in the homogenized 2195 Al-Li alloy is obviously eliminated, the second phase in the grain and at the grain boundary is basically dissolved back into the matrix, and there is a small amount of fishbone Al6(CuFeMn) phase at the grain boundary. The rheological stress after friction correction is smaller than the measured stress, the measured stress values of 2195 Al-Li alloy at different deformation temperatures and strain rates have a good correlation with the predicted values of the rheological stress constitutive equation (correlation coefficient R2=0.97). The predicted values of rheological stress of 2195 Al-Li alloy considering strain compensation is in good agreement with that of rheological stress after friction correction, the correlation coefficient R2 is 0.9913, and the average relative error Δ is 1.60%, indicating that the rheological stress constitutive equations based on friction correction and strain compensation have high accuracy. 

Funds:
河南省科技攻关项目(192102310244);机械工程智能化科研创新团队项目(HNACKT2020-04)
AuthorIntro:
张义俊(1974-),女,博士,副教授 E-mail:yijun7402@sina.com
Reference:

 [1]黄晓敏, 管奔, 臧勇. 航空铝锂合金热成形研究进展[J]. 稀有金属材料与工程, 2022, 51(12):4745-4756.


Huang X M, Guan B, Zang Y. Research progress in hot forming of aviation aluminumlithium alloy [J]. Rare Metal Materials and Engineering, 2022, 51(12): 4745-4756.

[2]李建军, 徐佳辉, 黄亮, 等. 铝锂合金形变热处理工艺研究进展[J]. 锻压技术, 2021, 46(11): 1-10.

Li J J, Xu J H, Huang L, et al. Research progress of thermomechanical treatment process of Al Li alloy [J]. Forging & Stamping Technology, 2021,46(11): 1-10.

[3]Harsha S, Dasharath S M. Investigation on mechanical properties of aluminium lithium alloy through rolling[J]. Materials Today: Proceedings, 2021, 45(P1): 392-398.

[4]朱宏斌, 韩艳彬, 王浩军, 等. 2A97铝锂合金薄板热处理变形控制及其力学性能研究[J]. 军民两用技术与产品, 2022, 469(11):48-53.

Zhu H B, Han Y B, Wang H J, et al. Research on deformation control and mechanical properties of 2A97 aluminumlithium alloy sheet after heat treatment [J]. Dualuse Technologies and Products, 2022, 469(11): 48-53.

[5]黄珂, 易幼平, 黄始全, 等. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 168-173.

Huang K, Yi Y P, Huang S Q, et al. Study on the ultralow temperature rheological behavior and forming characteristics of 2195 AlLi alloy [J]. Materials Reports, 2022, 36(3): 168-173.

[6]周璇, 肖华强, 田雨鑫, 等. 2195铝锂合金热变形流变行为与热加工图研究[J]. 精密成形工程, 2023, 15(1): 8-16.

Zhou X, Xiao H Q, Tian Y X, et al. Study on hot deformation rheological behavior and hot working diagram of 2195 AlLi alloy [J]. Journal of Netshape Forming Engineering, 2023, 15(1): 8-16.

[7]于以标, 陈乐平, 徐勇, 等. 2060T8E30铝锂合金的热变形行为及本构模型[J]. 稀有金属材料与工程, 2021, 50(12): 4388-4394.

Yu Y B, Chen L P, Xu Y, et al. Thermal deformation behavior and constitutive model of 2060T8E30 AlLi alloy [J]. Rare Metal Materials and Engineering, 2021, 50(12): 4388-4394.

[8]Wang Y, Zhao G, Xu X, et al. Constitutive modeling, processing map establishment and microstructure analysis of spray deposited AlCuLi alloy 2195[J]. Journal of Alloys and Compounds, 2019, 779:735-751.

[9]刘昊天, 申红斌, 肖瑞, 等. 1420铝锂合金板材细晶化及超塑性能试验研究[J]. 锻压技术, 2022,47(3):65-71.

Liu H T, Shen H B, Xiao R, et al. Experimental study on fine crystallization and superplasticity of 1420 aluminiumlithium alloys sheet [J]. Forging & Stamping Technology, 2022, 47(3): 65-71.

[10]李朝阳, 黄光杰, 曹玲飞, 等. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 178-184.

Li C Y, Huang G J, Cao L F, et al. Effect of heating rate on microstructure of AA2060 aluminumlithium alloy during intermediate thermomechanical treatment [J]. Materials Reports, 2022, 36(7): 178-184.

[11]刘一宏, 朱庆丰, 左玉波, 等. 预拉伸变形量对固溶态2050铝锂合金棒材力学性能影响[J]. 轻合金加工技术, 2022, 50(7): 30-36.

Liu Y H, Zhu Q F, Zuo Y B, et al. Effect of prestretching deformation on mechanical properties of 2050 aluminumlithium alloy bars in solid solution [J]. Light Alloy Processing Technology, 2022, 50(7): 30-36.

[12]赵一帆, 吴文科, 何国爱, 等. 基于应力修正的2195铝锂合金本构模型及热加工性能[J]. 航空材料学报, 2021, 41(5): 51-59.

Zhao Y F, Wu W K, He G A, et al. Constitutive model and hotworking properties of 2195 aluminumlithium alloy based on stress correction [J]. Journal of Aerospace Materials, 2021, 41(5): 51-59.

[13]郭幼节, 李劲风, 刘丹阳, 等. 铝锂合金动态再结晶行为的研究进展[J].航空材料学报,2022,42(5):15-31.

Guo Y J, Li J F, Liu D Y, et al. Research progress of dynamic recrystallization behavior of AlLi alloy [J]. Journal of Aeronautical Materials, 2022, 42(5): 15-31.

[14]Miao J S, Sutton S, Luo A A. Microstructure and hot deformation behavior of a new aluminumlithiumcopper based AA2070 alloy[J]. Materials Science & Engineering A, 2020, 777: 139048.

[15]校振华, 冯亚磊, 冯启生,等. 高强汽车中锰钢的热压缩变形行为研究[J]. 精密成形工程, 2023, 15(2): 125-131.

Xiao Z H, Feng Y L, Feng Q S, et al. Hot compression deformation behavior of manganese steel in high strength automobile [J]. Journal of Netshape Forming Engineering, 2023, 15(2): 125-131.

[16]汪冠宇, 马贵春, 吴建军. 2099T83铝锂合金本构模型研究[J]. 塑性工程学报, 2019, 26(1):174-181.

Wang G Y, Ma G C, Wu J J. Study on constitutive model of 2099T83 aluminumlithium alloy [J]. Journal of Plasticity Engineering, 2019, 26(1): 174-181.

[17]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143. 

[18]Goetz R L, Semiatin S L. The adiabatic correction factor for deformation heating during the uniaxial compression test[J]. Journal of Materials Engineering and Performance, 2001, 10(6): 710-717.

[19]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology, 1990, 6(11): 1072-1081.

[20]董宇, 叶凌英, 柯彬, 等. 基于修正流变应力的2050铝锂合金统一本构方程和热加工图[J]. 中国有色金属学报, 2022,32(5):1254-1268.

Dong Y, Ye L Y, Ke B, et al. Unified constitutive equation and hot working diagram of 2050 aluminumlithium alloy based on modified flow stress [J]. The Chinses Journal of Nonferrous Metals, 2022, 32(5): 1254-1268.

[21]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[22]Chen X X, Zhao G Q, Zhao X T, et al. Constitutive modeling and microstructure characterization of 2196 AlLi alloy in various hot deformation conditions[J]. Journal of Manufacturing Processes, 2020, 59:326-342.

[23]Zhang J, Liu Z M, Shi D F. Hot compression deformation behavior and microstructure of ascast and homogenized AA2195 AlLi alloy[J]. Metals, 2022, 12(10): 1580-1588.

[24]高明, 赵熹, 刘杰, 等. 新型高强韧AlZnMgCu合金热变形本构方程及热加工图研究[J]. 塑性工程学报, 2021, 28(3):126-136.

Gao M, Zhao X, Liu J, et al. Study on hot deformation constitutive equation and hot working diagram of a new high strength and toughness AlZnMgCu alloy[J]. Journal of Plasticity Engineering, 2021, 28(3): 126-136.

[25]范芳, 张竹林, 王从明, 等. 基于流变行为和热加工图的2014铝合金轮毂成形工艺[J].塑性工程学报, 2022, 29(10): 143-152.

Fan F, Zhang Z L, Wang C M, et al. 2014 aluminum alloy hub forming process based on rheological behavior and hot working diagram [J]. Journal of Plasticity Engineering, 2022, 29(10): 143-152.

[26]Li C, Chen Z, Zhang X Q, et al. Hot deformation behavior of high Zncontaining 7A65 Al alloy[J]. Rare Metals, 2022, 42(1): 302-312.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com