Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior and constitutive equations on H13 steel directionally solidified by low voltage pulsed magnetic field
Authors: Zheng Ce1  Li Yingju1  Zhang Jianwei2  Luo Tianjiao1  Yang Yuansheng1 
Unit: 1.Institute of Metal Research  Chinese Academy of Sciences 2.Xi′an Superalloy Technologies Co.  Ltd. 
KeyWords: low voltage pulsed magnetic field  H13 steel  solidification structure  thermal deformation  thermal processing diagram  constitutive model 
ClassificationCode:TG142.1+4
year,vol(issue):pagenumber:2023,48(11):221-231
Abstract:

The thermal compression tests on H13 steel directionally solidified by low voltage pulsed magnetic field (LVPMF) were conducted by using thermal simulation testing machine Gleeble-3800, and the thermal deformation behavior of this alloy steel was studied under the deformation temperature of 1000-1150 ℃ and the strain rate of 0.01-10 s-1. Then, the constitutive equations of the samples treated without and with LVPMF were established, the activation energy Q during the thermal deformation process was obtained, and the thermal processing diagram was drawn. The results show that during the directional solidification process of H13 steel, a low voltage pulsed magnetic field (excitation voltage of 200 V, magnetic field frequency of 5 Hz) is introduced, and the primary dendrites and secondary dendrites in the microstructure of the alloy steel are effectively refined. The thermal deformation activation energy Q and the rheological instability area of alloy steel subjected to LVPMF (grain refinement) are smaller, which reduces the band-like structure during the thermal compression process and has more excellent thermal workability. 

Funds:
国家重点研发计划(2018YFA0702901);国家科技重大专项(J2019-Ⅶ-0002-0142)
AuthorIntro:
作者简介:郑策(1992-),男,博士,助理研究员,E-mail:czheng14b@imr.ac.cn;通信作者:李应举(1979-),男,博士,研究员,E-mail:yjli@imr.ac.cn
Reference:

[1]李明珠,郭秀艳,咸洋,等.模具钢的发展与应用[J]. 理化检验:物理分册, 2012,47(11):702-705.


Li M Z, Guo X Y, Xian Y, et al. Development and application of die steel[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2012,47(11):702-705.

[2]阮雪榆,李志刚, 武兵书,等.中国模具工业和技术的发展[J].模具技术, 2001,(2):72-74.

Ruan X Y, Li Z G, Wu B S,et al. Development of China′s mold industry and technology[J]. Die and Mould Technology, 2001,(2):72-74.

[3]訾炳涛,崔建忠,巴启先.脉冲电流和脉冲磁场作用下LY12 铝合金凝固组织的比较[J].热加工工艺, 2000,29(4):3-5.

Zi B T, Cui J Z, Ba Q X. Comparison of the solidified structures in LY12 Al-alloy under pulsed electric current and pulsed magnetic field[J]. Hot Working Technology,2000,29(4):3-5.

[4]Li Q S, Song C J, Li H B, et al. Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J]. Materials Science and Engineering A, 2007,466:101-105.

[5]Yin Z X, Gong Y Y, Li B, et al. Refining of pure aluminum cast structure by surface pulsed magneto oscillation[J]. Journal of Materials Processing Technology, 2012,212(12):2629-2634.

[6]Zi B T, Ba Q X, Cui J Z, et al. Study on axial changes of as-cast structures of Al alloy sample treated by the novel SPMF technique[J]. Scripta Materialia,2000,43(4):377-380.

[7]Wang B, Yang Y S, Zhou J X, et al. Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field[J]. Transactions of Nonferrous Metals Society of China,2008,18(3):536-540.

[8]汪彬, 杨院生,周吉学, 等.脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响[J].稀有金属材料与工程. 2009,38(3):519-522.

Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr alloy[J]. Rare Metal Materials and Engineering, 2009,38(3):519-522.

[9]Ma X P, Li Y J, Yang Y S. Grain refinement effect of pulsed magnetic field on solidified microstructure of superalloy IN718[J]. Journal of Materials Research, 2009,24(10):3174-3181.

[10]Ma X P, Li Y J, Yang Y S. Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417[J]. Journal of Materials Research, 2009,24(8):2670-2676.

[11]Li Y J, Teng Y F, Yang Y S. Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J]. Metals and Materials International, 2014,20(3):527-530.

[12]滕跃飞, 李应举, 冯小辉, 等.脉冲磁场作用下矩形截面宽厚比对K4169 高温合金晶粒细化的影响[J].金属学报,2015,51(7):844-852.

Teng Y F, Li Y J, Feng X H, et al. Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metallurgica Sinica, 2015,51(7):844-852.

[13]郭连平, 尹健, 陈乐平, 等. 脉冲磁场对Mg-Gd-Zn-(Zr)合金组织和性能的影响[J].特种铸造及有色合金, 2013,33(5):480-483.

Guo L P, Yin J, Chen L P, et al. Effect of the pulsed magnetic field on the solidification microstructure and mechanical properties of Mg-Gd-Zn-(Zr) alloy[J]. Special Casting & Nonferrous Alloys, 2013, 33(5):480-483.

[14]Liotti E, Lui A, Vincent R, et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy[J]. Acta Materialia, 2014,70:228-239.

[15]赵志龙,张蓉,刘林,等.强脉冲磁场中Al-Cu共晶定向凝固组织的演变[J].材料研究学报,2005,(2):207-212.

Zhao Z L, Zhang R, Liu L, et al. Evolvement of Al-Cu eutectic unidirectionally solidified morphology in high intensity pulsed magnetic field[J]. Chinese Journal of Materials Research, 2005, (2):207-212.

[16]Song C J, Li Q S, Li H B, et al. Effect of pulse magnetic field on microstructure of austenitic stainless steel during directional solidification[J]. Materials Science and Engineering: A, 2008,485(1-2):403-408.

[17]Li Y J, Teng Y F, Feng X H, et al. Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. Journal of Materials Science & Technology, 2017, 33(1): 105-110.

[18]张金祥, 黄进峰, 崔华, 等.喷射成形H13钢的高温热变形及组织演变[J].热加工工艺, 2014,43(20):1-5.

Zhang J X, Huang J F, Cui H, et al.High-temperature thermal deformation and microstructure evolution of spray formed H13 tool steel[J]. Hot Working Technology, 2014,43(20):1-5.

[19]Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24.

[20]Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps[J]. Materials Science and Engineering: A, 2010, 527(21-22): 5467-5473.

[21]陈雷,王龙妹,杜晓建,等.2205双相不锈钢的高温变形行为[J].金属学报,2010,46(1):52-56.

Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel[J].Acta Metallurgica Sinica, 2010, 46(1): 52-56.

[22]McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering: A, 2002, 322(1-2):43-63.

[23]郝建军,张瑞丰,宋耀辉,等.2205双相不锈钢的热加工图和组织研究[J].锻压技术,2021,46(7):190-198.

Hao J J, Zhang R F, Song Y H, et al. Study on thermal processing diagram and microstructure for 2205 duplex stainless steel[J]. Forging & Stamping Technology, 2021,46(7):190-198.

[24]李慧中, 王海军, 刘楚明, 等. Mg-10Gd-4.8Y-2Zn-0.6Zr合金本构方程模型及加工图[J]. 材料热处理学报, 2010, 31(7):88-93. 

Li H Z, Wang H J, Liu C M, et al. Constitutive equation model and processing map for Mg-10Gd-4.8Y-2Zn-0.6Zr alloy[J]. Transactions of Materials and Heat Treatment, 2010, 31(7):88-93.

[25]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[26]张晓华, 邱晓刚, 卢国清, 等.应变速率敏感系数(m值)测试方法探讨[J].钢铁钒钛, 2001,(1):63-68.

Zhang X H, Qiu X G, Lu G Q, et al. Study of test and measurement method for coefficient (m value) of strain rate sensitivity[J]. Iron Steel Vanadium Titanium, 2001,(1):63-68.

[27]Prasad Y V R K,Gegel H L,Doraivelu S M,et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J].Metallurgical Transactions A, 1984, 15 (10): 1883-1892.

[28]樊明强,毛磊,张雲飞,等.H13钢高温压缩过程中温升对其变形行为及组织的影响[J].钢铁研究学报,2017,29(9):756-761.

Fan M Q, Mao L, Zhang Y F, et al. Effect of temperature rise on deformation behavior and microstructure of H13 steel during high temperature compression process[J]. Journal of Iron and Steel Research, 2017, 29(9): 756-761.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com