Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal compression behaviors of as-cast 300M steel biconical specimen
Authors: Xu Zhongzhi1  Han Shun1  Han Wen2  Li Bo2  Li Yong1   Wang Chunxu1  Yuan Wuhua3 
Unit: 1. Institute for Special Steel  Central Iron and Steel Research Institute 2. AVIC the First Aircraft Institute 3. Hunan University 
KeyWords: as-cast 300M steel  thermal compression  biconical specimen  equivalent strain  dynamic recrystallization 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(11):232-237
Abstract:

The dynamic recrystallization behavior of as-cast 300M steel biconical specimens at the heating temperature of 1000 and 1100 ℃ was studied by numerical simulation and thermal compression tests, and the microstructural model of dynamic recrystallization was constructed by software Deform-3D. Then, the microstructures of the biconical specimen at the positions with equivalent strains of 0.4, 0.8, 1.8 and 2.0 were analyzed by EBSD technology, and the dynamic recrystallization evolution law after thermal compression was explored. Comparing the simulation results with the test results, it is found that the dynamic recrystallization evolution results of thermal compression test are consistent with the numerical simulation results, and the equivalent strain and strain rates of the biconical specimens have the same distribution law, which are symmetrically distributed along the central line. The maximum temperature and the maximum deformation amount are located in the center, where the peak value of equivalent strain is 1.78. The dynamic recrystallization volume fraction increases with the increasing of strain, and the relationship between strain and dynamic recrystallization volume fraction is “S” shape.

Funds:
国家重点研发计划(2022YFB3705202)
AuthorIntro:
作者简介:许忠智(1997-),男,硕士研究生,E-mail:xzz_0202@163.com;通信作者:韩顺(1987-),男,博士,高级工程师,E-mail:hanshunfa@126.com
Reference:

[1]张慧萍, 王崇勋, 杜煦.飞机起落架用300M超高强钢发展及研究现状[J]. 哈尔滨理工大学学报, 2011,16(6): 73-76.


Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra-high strength steel and research[J]. Journal of Harbin University of Science and Technology, 2011,16(6): 73-76.

[2]赵振业, 赵英涛, 何鲁林, 等. 先进飞机结构材料的发展[J]. 材料工程, 1995,(1): 4-8,11.Zhao Z Y, Zhao Y T, He L L, et al. The development of structural materials of advanced aircraft[J]. Journal of Materials Engineering, 1995,(1): 4-8,11.

[3]Medeiros S C, Prasad Y V R K, Frazier W G, et al. Modeling grain size during hot deformation of IN718 [J]. Scripta Arteriola, 2000, 42 (1): 17-23. 

[4]Medeiros S C, Prasad Y V R K, Frazier W G, et al. Microstructural modeling of metadynamic recrystallization in hotworking of IN718 superalloy [J]. Materials Science and Engineering A, 2000, 293(1-2): 198-207.

[5]宁静, 王敖, 苏杰, 等. 新型中合金超高强度钢的热变形行为[J]. 锻压技术, 2022, 47(12): 234-239.

Ning J, Wang A, Su J, et al. Thermal deformation behavior on new medium alloy ultra-high strength steel[J]. Forging & Stamping Technology, 2022, 47(12): 234-239.

[6]Wang J, Dong J X, Zhang M C, et al. Hot working characteristics of nickel-base superalloy 740H during hot compression[J]. Materials Science and Engineering A, 2013, 566: 61-70.

[7]洪橙, 陈荣创, 郑志镇, 等. 300M钢奥氏体晶粒等温长大模型[J]. 塑性工程学报,2018, 25(1): 175-179.

Hong C, Chen R C, Zheng Z Z, et al. Isothermal growth model of austenite grain for 300M steel[J]. Journal of Plasticity Engineering, 2018, 25(1): 175-179.

[8]张旸, 魏明刚, 杨希, 等. AF1410钢动态再结晶行为研究[J]. 大型铸锻件, 2019, 187(1): 23-27.

Zhang Y, Wei M G, Yang X, et al. Behavior research on dynamic recrystallization of AF1410 steel[J]. Heavy Casting and Forging, 2019,187(1): 23-27.

[9]Bi Z N, Zhang M C, Dong J X, et al. A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys[J]. Materials Science and Engineering A, 2010, 527(16): 4373-4382.

[10]丁小凤, 蒯玉龙, 胡建华, 等. 挤压态镁合金热压缩微观组织预测模型[J]. 锻压技术, 2022, 47(2): 199-206.

Ding X F, Kuai Y L, Hu J H, et al. Prediction model on microstructure for as-extruded magnesium alloy in thermal compression[J]. Forging & Stamping Technology, 2022, 47(2): 199-206.

[11]周琳, 刘运玺, 陈玮, 等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属, 2022, 46(1): 27-35.

Zhou L, Liu Y X, Chen W, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals, 2022, 46(1): 27-35.

[12]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Materials Science and Engineering A, 2002, 323(1): 177-186.

[13]杨大伟, 李伟, 林莺莺,等. PH13-8Mo钢热变形行为及本构模型[J]. 锻压技术, 2021, 46(5): 234-239, 260.

Yang D W, Li W, Lin Y Y,et al. Hot deformation behavior and constitutive model for PH13-8Mo steel[J]. Forging & Stamping Technology, 2021, 46(5): 234-239,260.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com