Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on dynamic rolling force model under unsteady state and variable working conditions
Authors: Chen Haoyan1 Zhang Ming1 Yang Yanbo1 Ren Jianhua1 Wang Enrui2 
Unit: 1.Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province 2.Technology Center  HBIS Group Hansteel Company 
KeyWords: rolling mill vibration  variable working conditions  dynamic rolling force  transfer learning prediction accuracy 
ClassificationCode:TG335
year,vol(issue):pagenumber:2023,48(12):170-176
Abstract:

 Considering the horizontal vibration, vertical vibration and dynamic rolling process parameters of work roll, a CNN-LSTM dynamic rolling force model based on a combination of one-dimensional convolutional neural network (1D CNN) and long short-term memory network (LSTM) was established. Then, aiming at the problems of unsteady state and variable working conditions such as multiple product specifications and frequent roll changes in the hot rolling process, the dynamic rolling force prediction of small sample target data was enhanced by the transfer learning method. The results show that the CNN-LSTM model has better generalization ability. With 10354 sets of data, the prediction accuracy of the CNN-LSTM dynamic rolling force model is 96.7%, and the relative error is within 0.3%. For variable working conditions, the transfer learning model needs 600 sets of data to achieve the prediction accuracy of more than 90%.      The time of data training and parameter adjustment is saved by the transfer learning method, the prediction accuracy of small sample target data is improved to better adapt to the actual production, which provides a new idea for the rapid prediction of dynamic rolling force and vibration suppression.

Funds:
国家自然科学基金青年项目(52005148)
AuthorIntro:
作者简介:陈浩炎(1998-),男,硕士研究生 E-mail:2215683698@qq.com 通信作者:张明(1988-),男,博士,副教授 E-mail:zhangming@hebeu.edu.cn
Reference:

 [1]何坤,王立.中国钢铁工业生产能耗的发展与现状[J].中国冶金,2021,31(9):26-35.


He K, Wang L. Development and status of production energy consumption of China′s iron and steel industry[J]. China Metallurgy, 2021,31(9):26-35.

[2]张福明,李林,刘清梅. 中国钢铁产业发展与展望[J].冶金设备,2021,265(1):1-6,29.

Zhang F M, Li L, Liu Q M. Prospect and developmentof China′s steel industry[J]. Metallurgical Equipment, 2021, 265(1):1-6,29.

[3]Peng Y, Zhang M, Sun J L, et al. Experimental and numerical investigation on the roll system swing vibration characteristics of a hot rolling mill [J]. ISIJ International, 2017, 57(9):1567-1576.

[4]和东平. 基于动态轧制力的波纹辊轧机非线性垂振及稳定性控制研究[D].太原:太原理工大学,2021.

He D P. Study on Nonlinear Vertical Vibration and Stability Control of the Corrugated Rolling Mill Based on Dynamic Rolling Force[D].Taiyuan:Taiyuan University of Technology, 2021.

[5]崔金星. 热连轧机辊系与板带动态行为分析及动力学建模[D]. 秦皇岛:燕山大学,2022.

Cui J X. Dynamic Behavior Analysis and Dynamic Modeling of Rollsystem and Strip of Hot Tandem Mill[D]. Qinhuangdao: Yanshan University, 2022.

[6]侯东晓,郭大武,陈小辉. 基于动态轧制力的四辊轧机垂直-扭转耦合非线性振动特性研究[J]. 振动与冲击,2020,39(20):106-112.

Hou D X, Guo D W, Chen X H. A study on vertical-torsional coupled nonlinear vibration characteristics of 4-h rolling mill based on dynamic rolling force[J].Journal of Vibration and Shock, 2020, 39(20):106-112.

[7]杨彦博,彭艳,刘洋,等.考虑辊缝变化的板带热轧动态理论模型[J].钢铁,2022,57(2):85-93.

Yang Y B, Peng Y, Liu Y, et al. Dynamic theoretical model of strip hot rolling considering change of roll gap[J]. Iron and Steel, 2022, 57(2):85-93.

[8]刘彬,赵红旭,朱月,等. 基于动态轧制力的冷轧机两自由度垂直振动特性[J].中国机械工程,2014,25(17):2344-2350.

Liu B, Zhao H X, Zhu Y, et al. Two degree of freedom vertical vibration characteristics of cold rolling mill based on dynamic rolling force[J]. China Mechanical Engineering, 2014, 25(17):2344-2350.

[9]刘相华,赵启林,黄贞益.人工智能在轧制领域中的应用进展[J].轧钢,2017,34(4):1-5.

Liu X H, Zhao Q L, Huang Z Y. Prospect of artif-icial intelligent application in rolling[J]. Steel Rolling, 2017, 34(4):1-5.

[10]丁敬国,金利,孙丽荣,等. 板带热轧过程智能化建模方法的研究现状与展望[J].冶金自动化,2022,46(6):25-37.

Ding J G, Jin L, Sun L R, et al. Research status and prospect of intelligent modeling method for hot strip rolling process[J]. Metallurgical Industry Automation, 2022, 46(6):25-37.

[11]张瑞成,曹志新. 基于EEMD-LSTM的冷连轧机振动预测研究[J].锻压技术,2022,47(9):174-181.

Zhang R C, Cao Z X. Research on vibration prediction of tandem cold rolling mill based on EEMD-LSTM[J]. Forging & Stamping Technology, 2022,47(9):174-181.

[12]马威,李维刚,赵云涛,等.基于深度学习的热连轧轧制力预测[J].钢铁研究学报,2019,31(9):805-815.

Ma W, Li W G, Zhao Y T, et al.Prediction of hot-rolled roll force based on deep learning[J]. Journal of Iron and Steel Research, 2019, 31(9):805-815.

[13]刘明华,张强,刘英华,等.基于机器学习的热轧轧制力预测[J].锻压技术,2021,46(10):233-241.

Liu M H, Zhang Q, Liu Y H, et al. Prediction of rolling force in hot rolling based on machine learning[J]. Forging & Stamping Technology, 2021,46(10):233-241.

[14]Wang C L,Zhang M. Research on dynamic rolling force prediction model based on CNN-BN-LSTM[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022,16(3):1-14.

[15]王俊成,邹斌.基于迁移学习的切削力神经网络预测模型优化策略[J].组合机床与自动化加工技术,2021,(5):43-46.

Wang J C, Zou B. Optimization strategy of neural network prediction model for cutting force based on transfer learning[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021,(5):43-46.

[16]张西宁,余迪,刘书语.基于迁移学习的小样本轴承故障诊断方法研究[J].西安交通大学学报,2021,55(10):30-37.

Zhang X N, Yu D, Liu S Y. Fault diagnosis method for small sample bearing based on transfer learning[J]. Journal of Xi′an Jiaotong University,2021,55(10):30-37.

[17]陈仁祥,唐林林,胡小林,等. 不同转速下基于深度注意力迁移学习的滚动轴承故障诊断方法[J].振动与冲击, 2022,41(12):95-101,195.

Chen R X, Tang L L, Hu X L, et al. A rolling bearing fault diagnosis method based on deep attention transfer learning at different rotations[J]. Journal of Vibration and Shock, 2022,41(12):95-101,195.

[18]Luai A S,Zyad S,Basel K. Data mining: A preprocessing engine[J]. Journal of Computer Science,2006,2(9):735-739.

[19]刘阳,郜志英,周晓敏,等.工业数据驱动下薄板冷轧颤振的LSTM智能预报[J].机械工程学报,2020,56(11):121-131.

Liu Y, Gao Z Y, Zhou X M,et al. Industrial data-driven intelligent forecast for chatter of cold rolling of thinStrip with LSTM recurrent neural network[J]. Journal of Mechanical Engineering,2020,56(11):121-131.

[20]刘建伟,赵会丹,罗雄麟,等.深度学习批归一化及其相关算法研究进展[J].自动化学报,2020,46(6):1090-1120.

Liu J W, Zhao H D, Luo X L, et al. Research progress on batch normalization of deep learning and its related algorithms[J]. Acta Automatica Sinica, 2020,46(6):1090-1120.

[21]杨静,任彦,高晓文,等.基于GA-PELM的板材热连轧轧制力预测[J].锻压技术,2022,47(1):43-48.

Yang J, Ren Y, Gao X W, et al. Prediction of rolling force of sheet metal hot tandem rolling based on GA-PELM[J]. Forging & Stamping Technology, 2022,47(1):43-48.

[22]Chicco D,Warrens M J,Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. Peer J. Computer Science,2021,7(1):1-24.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com