Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on improvement of hydraulic impact on forging manipulator cart walking system
Authors: Zhao Meixiang1 2 3 4  Liu Wei1 2 3 4  Zhang Kangning1 2 3 4 Wang Jinpeng5 Shang Yingjun1 2 3 4 Cao An′ning1 2 3 4 
Unit: 1.Xi′an LS Heavy Machinery Co. Ltd. 2.Lanzhou LS Heavy Machinery Technology Co.  Ltd.  3. Gansu Metal Plastic Forming Equipment Intelligent Control Laboratory 4.Gansu Large Fast Forging Hydraulic Equipment Engineering   Technology Research Center  5.Lanzhou LS Energy Equipment Engineering Research Institute Co. Ltd. 
KeyWords: forging manipulator  cart walking connecting solenoid valve  hydraulic impact  stability  positioning accuracy  compensation control strategy 
ClassificationCode:TH137
year,vol(issue):pagenumber:2023,48(12):206-211
Abstract:

 An improved method of setting a connecting solenoid valve at the oil inlet and outlet ports of hydraulic motor for forging manipulator cart walking system was proposed, and combined with the compensation control strategy of connecting solenoid valve, the damage to the motor caused by the high pressure in the high pressure cavity of motor was avoided, and the damage caused by the vacuum in the low pressure cavity was avoided too, so the pressure impact of the two cavities was controlled actively. The improved method was simulated and compared by AMESim simulation platform, and the real-time working state of connecting solenoid valve, the pressure change at the A/B port of motor, the working curves of walking speed and displacement for cart, and the control mechanism of the research object were further understood. The results show thatafter setting a connecting solenoid valve at the A/B port of motorand adopting the compensation control strategy of connecting solenoid valve, the positioning accuracy and stability of the cart walking system are higher, and the hydraulic impact and cavitation are reduced.

Funds:
AuthorIntro:
作者简介:赵梅香(1987-),女,硕士,工程师 E-mail:1518983330@qq.com
Reference:

 [1]赵勇,林忠钦,王皓,等.重型锻造操作机的操作性能分析[J].机械工程学报,2010,46(11):69-75.


Zhao Y,Lin Z Q,Wang H,et al.Manipulation performance analysis of heavy manipulators[J].Journal of Mechanical Engineering,2010,46(11):69-75. 

[2]傅新,徐明,王伟,等.锻造操作机液压系统设计与仿真[J].机械工程学报,2010,46(11):51-54.

Fu X,Xu M,Wang W,et al.Hydraulic system design and simulation of the forging manipulator[J].Journal of Mechanical Engineering,2010,46(11):51-54.

[3]李阁强,江兵,周斌,等.20 t锻造操作机液压控制系统[J].农业机械学报,2015,46(1):352-358.

Li G Q, Jiang B, Zhou B, et al.Hydraulic control system of 20 t forging manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(1):352-358.

[4]江兵.锻造操作机机电液控制系统研究[D].洛阳:河南科技大学,2015.

Jiang B.The Research of Forging Manipulator Elrctro-hydraulic Control System[D].Luoyang: Henan University of Science and Technology,2015.

[5]朱汉银.锻造操作机液压系统能耗分析与节能控制研究[D].秦皇岛:燕山大学,2017.

Zhu H Y. Energy Consumption and Energy Saving Control of Hydraulic System for Forging Manipulator[D]. Qinhuangdao:Yanshan University,2017.

[6]马志刚,杨志怀,张晓丽,等.锻造操作机行走系统性能仿真分析[J].锻压技术,2022, 47(10):203-207.

Mang Z G, Yang Z H, Zhang X L, et al. Simulation analysis on performance of walking system for forging manipulator[J].Forging & Stamping Technology, 2022,47(10):203-207.

[7]刘晨荣,魏海涛,张晓丽,等.基于速度预测的锻造操作机大车定位控制研究[J].液压与气动,2022, 46(10):182-188.

Liu C R,Wei H T,Zhang X L, et al. Crane positioning control of forging manipulator based on speed prediction[J]. Chinese Hydraulics & Pneumatics, 2022,46(10):182-188.

[8]郝晓蓓.基于三角形速度规划的双锻造操作机大车行走同步控制方法[D].秦皇岛:燕山大学,2018.

Hao X B.Synchronization Control on Walking Hydraulic System of Dual Forging Manipulators Based on Triangular Velocity Planning[D].Qinhuangdao: Yanshan University,2018.

[9]桑育鑫.重载锻造操作机大车行走精度控制的研究[D].兰州:兰州交通大学,2017.

Sang Y X.Research on the Precision of Cart Movement Control of Heavy Load Forging Manipulator[D].Lanzhou:Lanzhou Jiaotong University,2017.

[10]王昕炜,苗荣霞.锻造操作机大车行走机构的单神经元自适应PID控制[J].西安工业大学学报,2014,34(12): 1012-1017.

Wang X W,Miao R X.Single neuron adaptive PID control of walking mechanism of forging manipulator cart[J].Journal of Xi′an Technological University,2014,34(12): 1012-1017.

 [11]刘杰.基于虚拟样机的锻造操作机阀控马达系统仿真研究[D].秦皇岛:燕山大学,2010.

Liu J. Simulation of Forging Manipulator Valve-controlled Motor System based on Virtual Prototype[D].Qinhuangdao:Yanshan University,2010.

[12]翟富刚,李瑞阳,袁龙,等.双锻造操作机大车行走系统控制方法探析[J].液压与气动,2019,(11):1-8.

Zhai F G, Li R Y, Yuan L, et al. Analysis on control method of walking system of dual forging manipulators [J]. Chinese Hydraulics & Pneumatics, 2019, (11): 1-8.

[13]翟富刚.液压锻造操作机多学科协同仿真研究[D].秦皇岛:燕山大学,2011.

Zhai F G. Multidisciplinary Collaborative Simulation Research on Hydraulic Forging Manipulator [D]. Qinhuangdao: Yanshan University, 2011.

[14]梁全,谢基晨,聂利伟.液压系统AMESim计算机仿真进阶教程[M].北京:机械工业出版社,2014.

Liang Q,Xie J C,Nie L W.Hydraulic System AMESim Computer Simulation Advanced Tutorial[M].Beijing:China Machine Press, 2014.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com