Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on constitutive model for LZ50 axle steel under high temperature tensile deformation
Authors: Li Hanlin He Tao Huo Yuanming Du Xiangyang Li Shiqian Jia Dongsheng 
Unit: School of Mechanical and Automotive Engineering Shanghai University of Engineering Science 
KeyWords: LZ50 axle steel  high-temperature tensile  Johnson-Cook model  DMNR model  constitutive equation 
ClassificationCode:TG142
year,vol(issue):pagenumber:2023,48(12):224-232
Abstract:

 In order to better describe the high-temperature tensile deformation behavior of LZ50 axle steel, high-temperature tensile tests of LZ50 axle steel were conducted by using Gleeble-3800 thermal simulation tester at the deformation temperatures of 900, 1000 and 1100 ℃ and the strain rates of 0.1, 1.0 and 10.0 s-1, respectively, and the stress-strain data were obtained under different deformation conditions. Then, based on the modified Johnson-Cook(JC) constitutive model and the multivariate nonlinear regression constitutive model(DMNR), two high-temperature tensile constitutive models for LZ50 axle steel were established. Furthermore, the predicted values of the two established models were compared with the experimental data, and the prediction accuracies of the two established models were quantitatively analyzed by using correlation coefficient R and average relative error AARE. The results show that the prediction abilities of the two models under different deformation temperatures are different, and JC model has better prediction ability at 900 ℃, with the R and AARE values of 0.995 and 1.20% respectively. However, DMNR model has better prediction ability at the deformation temperature of 1000 ℃, the R and AARE values are 0.997 and 6.38%, respectively, and the prediction accuracies of the two models at 1100 ℃ are similar.

Funds:
国家重点研发项目(2018YFB1307900);国家自然科学基金资助项目(52275350);上海市自然基金项目资助项目(20ZR1422100)
AuthorIntro:
作者简介:李汉林(2002-),男,硕士研究生 E-mail:915610463@qq.com 通信作者:何涛(1979-),男,博士,教授 E-mail:hetao@sues.edu.cn
Reference:

 [1]魏文波, 刁克军, 范新光,等. 我国铁路车辆轮轴发展综述[J]. 铁道车辆, 2022, 60 (3): 24-28.


Wei W B, Diao K J, Fan X G, et al. Overview of wheel-axle development of railway vehicle in China [J]. Rolling Stock, 2022, 60 (3): 24-28.

[2]朱德彪, 束学道. 工艺参数对楔横轧GH4169合金轴类件力能参数的影响[J]. 塑性工程学报, 2018, 25 (1): 52-59.

Zhu D B, Shu X D. Influence of process parameters on force and energy parameters of cross wedge rolling GH4169 alloy shaft parts [J]. Journal of Plasticity Engineering, 2018, 25 (1): 52-59.

[3]张钊玮, 曾健, 王锋华,等. 基于平面应变压缩的AZ80镁合金本构模型研究[J]. 塑性工程学报, 2020, 27 (10): 139-146.

Zhang Z W, Zeng J, Wang F H, et al. Study on constitutive model of AZ80 magnesium alloy based on plane strain compression [J]. Journal of Plasticity Engineering, 2020, 27 (10): 139-146.

[4]Lin J B, Wang Q D, Liu M P, et al. Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 1902-1906.

[5]顾晨, 郑磊, 葛琛,等. TNT埋爆载荷下700 MPa高强韧钢变形行为及仿真分析[J]. 钢铁, 2022, 57 (9): 130-137.

Gu C, Zheng L, Ge C, et al. Deformation behavior and simulation of 700 MPa steel subjected to TNT buried explosion load [J]. Iron and Steel, 2022, 57 (9): 130-137.

[6]Prawoto Y, Fanone M, Shahedi S, et al. Computational approach using Johnson-Cook model on dual phase steel [J]. Computational Materials Science, 2012, 54: 48-55.

[7]Ranc N, Chrysochoos A. Calorimetric consequences of thermal softening in Johnson-Cook's model [J]. Mechanics of Materials, 2013, 65: 44-55.

[8]张春菊, 丁轩, 杨明球,等. DP980钢的动态力学性能及本构模型构建[J]. 钢铁, 2022, 57 (2): 157-161.

Zhang C J, Ding X, Yang M Q, et al. Dynamic mechanical properties and constitutive model of DP980 steel [J]. Iron and Steel, 2022, 57 (2): 157-161.

[9]Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1999, 15(9): 963-980.

[10]Li Z X, Zhan M, Fan X G, et al. A modified Johnson-Cook model of as-quenched AA2219 considering negative to positive strain rate sensitivities over a wide temperature range [J]. Procedia Engineering, 2017, 207: 155-160.

[11]黄东英, 徐亮, 刘晓红. 冲击载荷下中碳低合金钢的动态力学性能与J-C本构模型的改进[J]. 锻压技术, 2021, 46 (11): 225-230.

Huang D Y, Xu L, Liu X H. Dynamic mechanical properties of medium carbon low alloy steel under and improvement of J-C constitutive model under impact load [J]. Forging & Stamping Technology, 2021, 46 (11): 225-230.

[12]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel [J]. Materials Science & Engineering A, 2010, 527(26): 6980-6986.

[13]Yuan Z, Li F, Qiao H, et al. A modified constitutive equation for elevated temperature flow behavior of Ti-6Al-4V alloy based on double multiple nonlinear regression [J]. Materials Science and Engineering A:Structural Materials:Properties,Microstructure and Processing, 2013, 578: 260-270.

[14]Shen M L, Huo Y M, He T, et al. Comparison of two constitutive modelling methods in application of TC16 alloy at the elevated deformation temperature [J]. Materials Today Communications, 2020, 24: 101053.

[15]郑晓华, 柏永青, 贾晓斌. 车轴用LZ50钢的热变形行为及高温塑性本构方程[J]. 金属热处理, 2020, 45 (10): 31-34.

Zheng X H, Bai Y Q, Jia X B. Hot deformation behavior and high temperature plastic constitutive equation of LZ50 steel for axle [J]. Heat Treatment of Metals, 2020, 45 (10): 31-34.

[16]李诗谦, 何涛, 杜向阳,等. 修正的 J-C 和 Z-A 模型对 LZ50 钢高温流变应力预测[J]. 钢铁, 2023,58(4):148-156.

Li S Q, He T, Du X Y, et al. Prediction of flow stress of LZ50 steel at high temperature by modified J-C and Z-A models [J]. Iron & Steel, 2023,58(4):148-156.

[17]Du S W, Chen S M, Song J J, et al. Hot deformation behavior and dynamic recrystallization of medium carbon LZ50 steel [J]. Metallurgical & Materials Transactions, 2017, 48(3): 1310-1320.

[18]林龙飞. 大型轴类零件柔性斜轧工艺及关键技术研究[D]. 北京:北京科技大学, 2022.

Lin L F. Research on the Key Technology of Flexible Skew Rolling Process for Large Shafts [D]. Beijing:University of Science and Technology Beijing, 2022.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com