Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation and grain size prediction on hot forging process of high-pressure oil rail based on DEFORM-3D
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG316;TG115.21
year,vol(issue):pagenumber:2024,49(1):38-46
Abstract:

 Based on software DEFORM-3D, the numerical simulation of hot forging process for high-pressure oil rail was conducted. Then, by analyzing the forming load curves, temperature field, equivalent stress field and equivalent strain field, the grain size of forgings during the hot forging process was predicted, and the hot forging process parameters for high-pressure oil rail were formulated. The results show that under the pressing conditions of pre-forging after heating the billet to 1150 ℃ and pressing rate of mechanical press of 0.5 cycles per second, the mold cavity is fully filled and the grain size of forgings is uniform. Through actual hot forging experiments metallographic experiments and Image-Pro Plus software, the accuracy of grain size prediction for forgings in the simulation is verified. After forging, the main grain size of forgings is grade 7 to 8, and the grains are dense and uniform. Through solid solution treatment, the strength of part is increased, and the plasticity and toughness are improved. It is confirmed that under this process plan, the forgings with good mold filling and uniform organization can be obtained, which has guiding significance for the actual hot forging production of high-pressure oil rails.

Funds:
国家自然科学基金资助项目(51905215);山东省重点研发计划项目(2019JZZY020111)
AuthorIntro:
作者简介:吴思远(1999-),男,硕士研究生 E-mail:1326453598@qq.com 通信作者:钱陈豪(1987-),男,博士,副教授 E-mail:qianch@jiangnan.edu.cn
Reference:

 [1]  廖喜平. 304不锈钢热变形行为研究及其在复杂锻件中的应用[D].上海:上海交通大学,2018. 


 

Liao X P. Study on the Hot Deformation Behavior of 304 Stainless Steel and the Application in Complicated Forging Part [D]. Shanghai: Shanghai Jiao Tong University,2018.

 

[2]  景飞,赵升吨,赵仁峰,等.金属厚壁管的旋转疲劳弯曲精密下料的研究[J].锻压装备与制造技术,2015,50(3):110-113,126.

 

Jing F,Zhao S D,Zhao R F,et al. Study on rotary fatigue bend precision blanking of thick-wall metal tube [J]. China Metalforming Equipment & Manufacturing Technology,2015,50(3): 110-113,126.

 

[3]  Lee W S,Lin C F,Chen T H,et al. High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate [J]. Materials Science and Engineering: A,2010,527(13-14): 3127-3137.

 

[4]  张传滨. 304L不锈钢热变形过程微观组织演变机制的研究[D].太原:太原科技大学,2011. 

 

Zhang C B. Study on the Microstructure Evolution Mechanism of 304L Stainless Steel during Hot Deformation Process [D]. Taiyuan: Taiyuan University of Science and Technology,2011.

 

[5]  Wang Z Q,Palmer T A,Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia,2016,110: 226-235.

 

[6]  刘大海,陈劲东,柴浩瑞,等.基于DEFORM-3D的GH5188卡箍热模锻造过程数值模拟[J].锻压技术,2022,47(6):9-16. 

 

Liu D H,Chen J D,Chai H R,et al. Numerical simulation of hot die forging process for GH5188 clamp based on DEFORM-3D[J]. Forging & Stamping Technology,2022,47(6): 9-16.

 

[7]  王笑驰,左鹏鹏,吴晓春.SDP1塑料模具钢锻造过程组织演变的数值模拟[J].锻压技术,2023,48(2):16-28.

 

Wang X C,Zuo P P,Wu X C. Numerical simulation of microstructure evolution for SDP1 plastic die steel during forging process[J]. Forging & Stamping Technology,2023,48(2): 16-28.      

 

[8]  杨雨童,程晓农,罗锐,等.304和304L奥氏体不锈钢的热加工性能研究[J].塑性工程学报,2019,26(1): 156-161.

 

Yang Y T,Cheng X N,Luo R,et al.Research on hot workability of 304 and 304L austenitic stainless steel[J]. Journal of Plasticity Engineering,2019,26(1): 156-161.

 

[9]  车路长,蒋平,刘俊,等.Ti-6Al-4V钛合金筋板类吊挂锻造成形工艺优化及模具磨损研究[J].精密成形工程,2022,14(7):106-115. 

 

Che L C,Jiang P,Liu J,et al.Optimization of Ti-6Al-4V titanium alloy ribbed plate type hanging forging forming process and die wear [J]. Journal of Netshape Forming Engineering,2022,14(7): 106-115.

 

[10]王以华,吕景林,姜剑敏,等.锻模设计技术及实例[M].北京:机械工业出版社,2009.

 

Wang Y H,Lyu J L,Jiang J M,et al. Design Technology and Examples of Forging Die [M]. Beijing: China Machine Press,2009.

 

[11]郑赣. 发动机曲轴热锻数值模拟及工艺优化[D].上海:上海工程技术大学,2020.

 

Zheng G. The Numerical Simulation and Process Optimization of Engine Crankshaft Hot Forging [D]. Shanghai:Shanghai University of Engineering Science,2020.

 

[12]齐羿. 汽车盘式转向节锻造工艺及成形过程数值模拟研究[D].济南:山东大学,2021. 

 

Qi Y. Research on Forging Process and Numerical Simulation of Forming Process of Automotive Disc Steering Knuckle [D]. Jinan: Shandong University,2021.

 

[13]Xu W J,Li W H,Wang Y S. Experimental and theoretical analysis of wear mechanism in hot-forging die and optimal design of die geometry[J]. Wear,2014,318(1-2): 78-88.

 

[14]王自敏,杨志强,胡芳忠,等. Nb微合金化对18CrNiMo7-6钢奥氏体晶粒长大的影响[J]. 金属热处理,2021,46(9):53-57. 

 

Wang Z M,Yang Z Q,Hu F Z,et al. Effect of Nb microalloying on austenite grain growth of 18CrNiMo7-6 steel [J]. Heat Treatment of Metals,2021,46(9): 53-57.

 

[15]Ghaderi S,Karimzadeh F,Ashrafi A. Evaluation of microstructure and mechanical properties of transient liquid phase bonding of Inconel 718 and nano/ultrafine-grained 304L stainless steel[J]. Acta Materialia,2020,49: 162-174.

 

[16]周慧,李锡栋.固溶处理对304不锈钢显微组织及力学性能的影响[J].热加工工艺,2018,47(24):234-235.

 

Zhou H,Li X D. Effects of solid solution treatment on microstructure and mechanical properties of 304 stainless steel [J]. Hot Working Technology,2018,47(24): 234-235.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com