Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2024,49(2):227-233
Abstract:

 The influences of solution treatment on the phase composition, microstructure and tensile properties of high-strength lightweight automotive Fe-30Mn-10Al-2C steels in forging and aging states were studied by metallographic microscope, hardness tester, tensile testing machine and other methods, and its mechanism of action was analyzed. The results show that the microhardness of automotive steel in solid solution state gradually decreases with the increasing of solution temperature from 950 ℃ to 1200 ℃ at different solution time. Under the same aging process, the higher the solution temperature, the greater the microhardness of automotive steel. When the solution temperature is 1100 ℃, the hardening characteristics of automotive steel are relatively obvious. With the increasing of solution temperature, the grain size of automotive steel in solid solution state gradually increases. When the solid solution temperature rises to 1150 ℃ and above, high temperature ferrite phase δ appears in the automotive steel. When the solid solution time and the aging process are the same, the strength-ductility balance of aged automotive steel first increases and then decreases as the solid solution temperature increases. 1100 ℃/1 h+500 ℃/4 h is the suitable solid solution and aging heat treatment systems for automotive steel. At this time, the automotive steel has the highest strength-ductility balance of 45.66 GPa·%.

 
Funds:
基金项目:河南省杰出人才创新基金资助项目(182102610014)
AuthorIntro:
作者简介:李韬(1980-),男,硕士,讲师
Reference:

 
[1]杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势
[J]. 材料导报, 2021, 35(15): 15189-15196.


 

Du J L, Feng Y L, Zhang Y L. Research status and development trend of new Q&P steel for automobiles
[J]. Materials Reports, 2021, 35 (15): 15189-15196.

 


[2]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望
[J]. 钢铁研究学报, 2020, 32(12): 1059-1076.

 

Zhao Z Z, Chen W J, Gao P F, et al. Research progress and prospects of advanced highstrength automotive steel
[J]. Journal of Iron and Steel Research, 2020, 32 (12): 1059-1076.

 


[3]金学军, 龚煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望
[J]. 金属学报, 2020, 56(4):411-428.

 

Jin X J, Gong Y, Han X H, et al. Research status and prospects for the manufacturing and use of advanced hot formed automotive steel
[J]. Acta Metallurgica Sinica, 2020, 56 (4): 411-428.

 


[4]王存宇, 常颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术
[J].金属学报, 2020,56(4):400-410.

 

Wang C Y, Chang Y, Zhou F L, et al. Theory and technology of M3 structure regulation for high strength and high plasticity third generation automotive steel
[J]. Acta Metallurgica Sinica, 2020,56 (4): 400-410.

 


[5]Azizi A, Abedi H R,Saboori A. Work hardening behavior and substructure evolution of a lowdensity steel during compressive deformation
[J]. Journal of Materials Research and Technology,2022,21: 4200-4211.

 


[6]王明明, 张晓妍, 肖亚茹, 等. 汽车用高强塑积钢关键研究进展之一: Q&P钢的研究进展
[J].材料热处理学报, 2019, 40(6): 11-19.

 

Wang M M, Zhang X Y, Xiao Y Y, et al. One of the key research advances in highstrength plastic deposited steel for automobiles: Research progress in Q&P steel
[J]. Transactions of Materials and Heat Treatment, 2019, 40 (6): 11-19.

 


[7]苏张磊, 李玮, 罗志敏. 高强塑积汽车用中锰钢的热变形与组织性能
[J]. 锻压技术,2022, 47(8): 241-248.

 

Su Z L, Li W, Luo Z M. Hot deformation and microstructure properties of highstrength plastic deposited medium manganese steel for automobiles
[J]. Forging & Stamping Technology, 2022, 47 (8): 241-248.

 


[8]樊立峰, 亢泽, 张志朋, 等. 逆相变热处理时间对冷轧中锰钢组织和性能的影响
[J]. 材料热处理学报, 2022,43(6):110-119.

 

Fan L F, Kang Z, Zhang Z P, et al. The effect of reverse phase transformation heat treatment time on the microstructure and properties of cold rolled medium manganese steel
[J]. Transactions of Materials and Heat Treatment,  2022,43 (6): 110-119.

 


[9]刘志伟, 王书勤, 罗凤亮. 固溶处理对汽车用FeMnAlC高强低密度钢组织与力学性能的影响
[J]. 热加工工艺,2020,49(18):111-115.

 

Liu Z W, Wang S Q, Luo F L. The effect of solid solution treatment on the microstructure and mechanical properties of FeMnAlC highstrength lowdensity steel for automotive use
[J]. Hot Working Technology, 2020,49 (18): 111-115.

 


[10]GB/T 228.1-2021, 金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].

 


[11]Wang W J, Man T H,Zhang M, et al. δferrite dynamic recrystallization behavior during thermal deformation in Fe-32Mn-11Al-0.9C low density steel
[J]. Journal of Materials Research and Technology, 2022, 18: 1345-1357.

 


[12]Wang W S, Zhu H Y,Zhou J, et al. Interaction between oxide inclusions and lowdensity steel during heat treatment
[J]. Metallurgical and Materials Transactions B, 2022, 53(5): 2991-3002.

 


[13]时红宇. 汽车用钢的显微组织和力学及耐磨性能研究
[J]. 太原学院学报:自然科学版, 2021, 39(3):54-59.

 

Shi H Y. Study on the microstructure, mechanical properties, and wear resistance of automotive steel
[J]. Journal of Taiyuan University:Natural Science Edition, 2021, 39 (3): 54-59.

 


[14]任平, 陈兴品, 王存宇, 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响
[J]. 金属学报, 2022,58(6):771-780.

 

Ren P, Chen X P, Wang C Y, et al The effect of pre deformation and dual stage aging on the microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low density steel
[J].Acta Metallurgica Sinica,2022, 58 (6): 771-780.

 


[15]Park K T, Hwang S W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C lowdensity steel
[J]. JOM, 2014, 66(9): 1828-1836.

 


[16]王瑞, 张丽凤, 王社则, 等. 低密度汽车钢的显微组织与氢脆性能
[J]. 上海金属,2020, 42(4): 6-10.

 

Wang R, Zhang L F, Wang S Z, et al. Microstructure and hydrogen embrittlement properties of low density automotive steel
[J]. Shanghai Metals, 2020, 42 (4): 6-10.

 


[17]Peng W, Gao X Q, Gao X F, et al. Effect of microstructure evolution in austenite zone on mechanical properties of Fe-10Mn-5.5Al-0.25C steel
[J]. Materials & Design, 2020, 196: 109163-109171.

 


[18]林方敏, 邢梅, 唐立志, 等. FeMnAlC系低密度钢及其强韧化机制研究进展
[J]. 材料导报, 2023,37(5): 162-169.

 

Lin F M, Xing M, Tang L Z, et al. Research progress on FeMnAlC low density steel and its strengthening and toughening mechanism
[J]. Materials Reports,2023,37(5): 162-169.

 


[19]徐越鹏. 热处理对汽车用高强低密度钢组织及性能的影响
[D].重庆:重庆大学, 2017.

 

Xu Y P. The Effect of Heat Treatment on the Microstructure and Properties of Highstrength Lowdensity Steel for Automobiles
[D]. Chongqing:Chongqing University, 2017.

 


[20]Liu Y X, Liu M X, Zhang J L, et al. Microstructure and mechanical properties of a Fe-28Mn-9Al-1.2C-(0,3,6,9)Cr austenitic lowdensity steel
[J]. Materials Science and Engineering: A, 2021, 821:141583-141592.

 


[21]沈国慧, 胡斌, 杨占兵, 等. 回火温度对含δ铁素体高铝中锰钢力学性能和显微组织的影响
[J]. 金属学报, 2022, 58(2):165-174.

 

Shen G H, Hu B, Yang Z B, et al. Influence of tempering temperature on mechanical properties and microstructures of highAlcontained medium Mn steel having δferrite
[J].Acta Metallurgica Sinica, 2022, 58 (2): 165-174.

 


[22]刘赛娅, 李少华, 柏慧, 等. 退火和时效对Fe-12Mn-7Al-0.6C-0.5V低密度钢组织性能的影响
[J]. 材料与冶金学报, 2020,19(2):134-141.

 

Liu S Y, Li S H, Bai H, et al. The effect of annealing and aging on the microstructure and properties of Fe-12Mn-7Al-0.6C-0.5V low density steel
[J]. Journal of Materials and Metallurgy, 2020,19 (2): 134-141.

 


[23]Dolzhenko P D, Valiev R Z, Belyakov A N, et al. Effect of multiple forging and annealing on microstructure and mechanical properties of a highmanganese steel
[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1014(1):12008-12012.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com