[1]高钰璧,丁雨田,孟斌,等. Inconel 625合金中析出相演变研究进展[J].材料工程,2020,48(5): 13-22.
Gao Y B,Ding Y T,Meng B,et al. Research progress in evolution of precipitated phases in Inconel 625 superalloy[J].Journal of Materials Engineering,2020,48(5):13-22.
[2]Chen X M, Lin Y C, Chen M S, et al. Microstructural evolution of a nickel-based superalloy during hot deformation[J]. Materials & Design, 2015, 77: 41-49.
[3]王方军,刘应龙,时瑶,等. 等温退火处理对Inconel 625合金箔材组织和性能的影响[J].金属热处理,2022,47(3):77-81.
Wang F J, Liu Y L, Shi Y, et al. Effect of isothermal annealing treatment on microstructure and properties of Inconel 625 alloy foil[J]. Heat Treatment of Metals, 2022, 47(3): 77-81.
[4]蔡远飞,隋毅,朱治愿,等. 超低铁Inconel 625合金的热处理[J].金属热处理,2018,43(9): 175-181.
Cai Y F, Sui Y, Zhu Z Y, et al. Heat treatment of ultra-low iron Inconel 625 alloy[J]. Heat Treatment of Metals, 2018,43(9):175-181.
[5]王岩,徐芳泓,李阳,等.应变速率对617B镍基高温合金组织演变的影响[J].稀有金属材料与工程,2014,43(12):3027-3030.
Wang Y, Xu F H, Li Y, et al. Effect of strain rate on the microstructural evolution of 617B Ni-base superalloy[J]. Rare Metal Materials and Engineering, 2014,43(12):3027-3030.
[6]李烁, 闫森, 金奎文, 等. 碳含量及热加工变形量对镍基合金GH3625组织和性能的影响[J]. 特殊钢, 2022, 43(2): 75-78.
Li S, Yan S, Jin K W, et al. Effect of carbon content and hot-working deformation on microstructure and properties of nickel base alloy GH3625[J]. Special Steel, 2022, 43(2): 75-78.
[7]张春林, 王新鹏, 宁天信, 等. UNS N06625合金热成形工艺的模拟试验和分析[J]. 特殊钢, 2017, 38(2): 1-5.
Zhang C L, Wang X P, Ning T X, et al. Simulation test and analysis on hot forming process of alloy UNS N06625[J]. Special Steel, 2017, 38(2): 1-5.
[8]Wang J, Dong J X, Zhang M C, et al. Hot working characteristics of nickel-base superalloy 740H during compression[J]. Materials Science and Engineering: A,2013, 566: 61-70.
[9]Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy[J]. Materials & Design, 2015, 65: 1153-1160.
[10]丁雨田,马元俊,豆正义,等. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J].材料导报,2018,32(8): 1311-1317.
Ding Y T, Ma Y J, Dou Z Y, et al. Effect of solution treatment temperature on microstructure and mechanical properties of GH3625 alloy hot extruded tube[J]. Materials Review, 2018,32(8):1311-1317.
[11]蔡梅,刘建平,吴香菊,等. GH625合金锻造工艺研究[J].沈阳航空航天大学学报,2011,28(4):52-59.
Cai M, Liu J P, Wu X J, et al. Technical study on GH625 alloy forging[J]. Journal of Shenyang Aerospace University,2011,28(4):52-59.
[12]Jiang H, Yang L,Dong J X, et al. The recrystallization model and microstructure prediction of alloy 690 during hot deformation[J]. Materials & Design, 2016,104: 162-173. [13]杨浩, 王方军, 李采, 等. 镍基高温合金的熔炼工艺研究进展[J]. 特殊钢, 2023, 44(3): 1-9. Yang H, Wang F J, Li C, et al. Research progress on the melting process of nickel based high-temperature alloys[J]. Special Steel, 2023, 44(3): 1-9. [14]ASME SB-443-2023,Specification for nickel-chromium-molybdenum-columbium alloy (UNS N06625) and nickel-chromium-molybdenum-silicon alloy (UNS N06219) plate, sheet and strip[S]. [15]ASTM E 8/E 8M-21,Standard test methods for tension testing of metallic materials[S]. [16]王岩. 镍基合金N06625变形-热处理组织演变特性研究[A]. 2019年(首届)中国金属学会不锈钢科技发展论坛[C].北京,2019. Wang Y. Study on microstructure evolution characteristics of N06625 nickel-based alloy during deformation-heat treatment[A]. First China Metal Society Stainless Steel Technology Development Forum in 2019[C].Beijing,2019. [17]GB/T 10561—2023,钢中非金属夹杂物含量的测定标准评级图显微检验法[S]. GB/T 10561—2023,Determination of content of nonmetallic inclusions in steel—Micrographic method using standard diagrams[S]. [18]ASTM A262C-2021,Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels[S]. [19]ASTM G28-2015,Standard test methods for detecting susceptibility to intergranular corrosion in wrought, nickel-rich, chromium-bearing alloys[S]. [20]ASTM G48-2020,Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution[S].
|