Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Finite element analysis on cross-section distortion in tube rotary draw bending based on variation of elastic modulus
Authors: Wan Tao1  Fang Jun1  Ouyang Fang2  Shang Wenxuan1  Lu Shiqiang2  Wang Kelu2 
Unit: 1. Jiangxi Science and Technology Normal University  2. Nanchang Hangkong University 
KeyWords: high-strength stainless steel tube  rotary draw bending  cross-section distortion rate  elastic modulus  multi-factor sensitivity analysis 
ClassificationCode:TG386
year,vol(issue):pagenumber:2024,49(3):52-59
Abstract:

To realize the precise rotary draw bending forming of 0Cr21Ni6Mn9N high-strength stainless steel tube, the whole process finite element model of tube rotary draw bending considering the variation of elastic modulus was established, the impacts of process parameters on cross-section distortion during the tube rotary draw bending were investigated, and the sensitivities of cross-section distortion to process parameters were analyzed. The results indicate that when considering the variation of elastic modulus, the variation trend of cross-section distortion rate is basically the same with that without considering the variation of elastic modulus, but the value is relatively large and is closer to the experimental results. The cross-section distortion rate increases with the increasing of friction factor fm between tube and mandrel, clearance  Cp between tube and pressure die, clearance Cm between tube and mandrel or with the decreasing of friction factor fp between tube and pressure die, axial feeding  e of mandrel, and the cross-sedion distortion is most sensitive to e, followed by fm, Cm and fp, while that is least sensitive to Cp. The optimal process parameters range are as follows:fp=0.25-0.40、fm=0.05-0.15、Cp=0.075-0.100 mm、Cm=0.075-0.150 mm、e=0.5-2.0 mm. 

Funds:
江西省自然科学基金资助项目(20192BAB216022);江西省教育厅科学技术研究项目(GJJ201126,GJJ180615)
AuthorIntro:
作者简介:万涛(1974-),男,学士,讲师,E-mail:490255128@qq.com;通信作者:方军(1984-),男,博士,副教授,E-mail:fangjun020j13@163.com
Reference:

[1]SAE AMS5561H—2021, Steel, corrosion and heat-resistant, welded and drawn or seamless and drawn tubing 9.0Mn-20Cr-6.5Ni-0.28N high-pressure hydraulic[S]. 


 

[2]Fang J, Lu S Q, Wang K L, et al. Springback law of high strength 21-6-9 stainless steel tube in numerical control bending under different process parameters[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture, 2017,231(10):1783-1792.

 

[3]方军, 鲁世强, 王克鲁, 等. 0Cr21Ni6Mn9N不锈钢管材数控弯曲截面畸变有限元分析[J], 塑性工程学报, 2013, 20(5): 71-76.

 

Fang J, Lu S Q, Wang K L, et al. FE analysis of section distortion in numerical control bending of the 0Cr21Ni6Mn9N stainless steel tube[J]. Journal of Plasticity Engineering, 2013, 20(5): 71-76.

 

[4]鄂大辛, 周大军. 金属管材弯曲理论及成形缺陷分析[M]. 北京: 北京理工大学出版社, 2016.

 

E D X, Zhou D J. Metal Tube Bending: Theory and Forming Defects Analysis[M]. Beijing: Beijing Institute of Technology Press, 2016.

 

[5]Fang J, Ouyang F, Lu S Q, et al. Variation of elastic modulus of high strength 21-6-9 tube and its influences on forming quality in numerical control rotary draw bending[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science, 2021, 235(21):5684-5694.

 

[6]Paulsen F, Welo T. A design method for prediction of dimensions of rectangular hollow sections formed in stretch bending[J]. Journal of Materials Processing Technology, 2002,128(1-3):48-66.

 

[7]Lu S Q, Fang J, Wang K L. Plastic deformation analysis and forming quality prediction of tube NC bending[J]. Chinese Journal of Aeronautics, 2016, 29(5):1436-1444.

 

[8]Zhang Z Q. Theoretical prediction for maximum residual cross-sectional deformation of thin-walled cylindrical steel tubes under pure plastic bending[J]. Thin-Walled Structures, 2018, 133:120-133.

 

[9]Fu M Y, Wang Z L, Zhang S Y, et al. Full-cross-section deformation characterization of Cu/Al bimetallic tubes under rotary-draw-bending based on physics-driven B-spline curves fitting[J]. Materials & Design,2022, 215:110493.

 

[10]Liu K X, Liu Y L, Yang H, et al. Experimental study on cross-section distortion of thin-walled rectangular 3A21 aluminium alloy tube by rotary draw bending[J]. International Journal of Materials and Product Technology, 2011, 42(1-2):110-120.

 

[11]Safdarian R, Kord A. Experimental investigation of effective parameters in the tube rotary bending process[J]. Materials Research Express, 2019, 6(6): 066531. 

 

[12]Kale A V, Thorat H T. Effect of precompression on ovality of pipe after bending[J]. Journal of Pressure Vessel Technology, 2009,131(1):011207.

 

[13]Guo X Z, Cheng X, Xu Y, et al. Finite element modelling and experimental investigation of the impact of filling different materials in copper tubes during 3D free bending process[J].Chinese Journal of Aeronautics,

2020, 33(2):721-729.

 

[14]Liu H L, Liu Y L, Du X Y. Cross-sectional deformation of high strength steel rectangular welded tube in rotary draw bending with different constitutive relationships[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(9-10):4333-4344.

 

[15]Liu H L, Liu Y L. Cross section deformation of heterogeneous rectangular welded tube in rotary draw bending considering different yield criteria[J]. Journal of Manufacturing Processes, 2021, 61:303-310.

 

[16]Zhan M, Huang T, Zhang P P, et al. Variation of Young′s modulus of high-strength TA18 tubes and its effects on forming quality of tubes by numerical control bending[J]. Materials & Design, 2014, 53: 809-815.

 

[17]Fang J, Lu S Q, Wang K L, et al. Three-dimensional finite element model of high strength 21-6-9 stainless steel tube in rotary draw bending and its application[J]. Indian Journal of Engineering and Materials Sciences, 2015, 22(2): 141-152.

 

[18]Fang J, Lu S Q, Wang K L, et al. Effect of mandrel on cross section quality in numerical control bending process of stainless steel 2169 small diameter tube[J].Advances in Materials Science and Engineering, 2013, 2013(1): 849495. 

 

[19]Fang J, Lu S Q, Wang K L, et al. Deformation behaviors of 21-6-9 stainless steel tube numerical control bending under different friction conditions[J]. Journal of Central South University, 2015, 22(8): 2864-2874.

 

[20]方军, 鲁世强, 王克鲁, 等. 管模间隙对21-6-9高强不锈钢管数控绕弯成形质量的影响[J]. 北京理工大学学报, 2015, 35(9): 886-891.

 

Fang J, Lu S Q, Wang K L, et al. Effect of clearance between tube and dies on forming quality in NC bending process of high strength 21-6-9 stainless steel tube[J]. Transactions of Beijing Institute of Technology, 2015, 35(9): 886-891. 

 

[21]欧阳芳, 鲁世强, 方军, 等. 几何参数对变弹性模量条件下21-6-9管绕弯成形质量的影响[J]. 塑性工程学报, 2020, 27(1): 27-37.

 

Ouyang F, Lu S Q, Fang J, et al. Effect of geometrical parameters on forming quality of 21-6-9 tube in rotary draw bending under condition of variable elastic modulus[J]. Journal of Plasticity Engineering, 2020, 27(1): 27-37.

 

[22]方军, 欧阳芳, 尚文瑄, 等. 工艺参数对弹性模量变化条件下高强不锈钢管绕弯回弹行为的影响[J]. 锻压技术, 2022, 47(11): 137-145.

 

Fang J, Ouyang F, Shang W X, et al. Influence of process parameters on springback behavior in rotary draw bending under variable elastic modulus condition for high strength stainless steel tube [J]. Forging & Stamping Technology, 2022, 47(11): 137-145.

 

[23]方军, 欧阳芳, 尚文瑄, 等. 工艺参数对弹性模量变化条件下管材绕弯成形截面畸变的影响[J]. 塑性工程学报, 2023, 30(8): 68-75.

 

Fang J, Ouyang F, Shang W X, et al. Effects of process parameters on cross section distortion of tube rotary draw bending under condition of elastic modulus variation [J]. Journal of Plasticity Engineering, 2023, 30 (8): 68-75.

 

[24]Yang H, Li H, Zhan M. Friction role in bending behaviors of thin-walled tube in rotary-draw-bending under small bending radii[J]. Journal of Materials Processing Technology, 2010, 210(15): 2273-2284.

 

[25]Li H, Yang H, Zhan M, et al. Role of mandrel in NC precision bending process of thin-walled tube[J]. International Journal of Machine Tools and Manufacture, 2007, 47(7-8):1164-1175.

 

[26]王同海. 管材塑性加工技术[M]. 北京:机械工业出版社, 1998.

 

Wang T H. Tube Plastic Processing Technology[M]. Beijing: China Machine Press, 1998.

 

[27]方军, 鲁世强, 王克鲁, 等. 21-6-9高强不锈钢管数控弯曲回弹对材料参数的敏感性[J]. 西安交通大学学报, 2015,49(3):136-142.

 

Fang J, Lu S Q, Wang K L, et al. Sensitivity analysis of springback to material parameters in high strength 21-6-9 stainless steel tube NC bending[J]. Journal of Xi′an Jiaotong University, 2015,49(3):136-142.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com