Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Prediction on hot rolled strip width based on improved BOA-ELM
Authors: Chen Xiaotian Zhang Shuai Yang Peihong Zhang Yong 
Unit: Inner Mongolia University of Science and Technology 
KeyWords: prediction of rough rolling width hot rolled strip butterfly optimization algorithm Fuch chaotic mapping non-linearity inertia weights refraction reverse learning 
ClassificationCode:TG335.56;TP183
year,vol(issue):pagenumber:2024,49(3):101-106
Abstract:

For the characteristics of strong coupling and non-linearity of parameters in traditional rough rolling width prediction model, a new rough rolling width prediction model based on improved butterfly algorithm optimized extreme learning machine (IBOA-ELM) was proposed from the data-driven perspective. Firstly, the random weight and bias of the extreme learning machine (ELM) were optimized by butterfly optimization algorithm (BOA) to improve the prediction accuracy of ELM model. Then, for the problems that the butterfly optimization algorithm was easy to fall into local optimum and the convergence was poor, the butterfly  optimization algorithm was improved by introducing  the strategies of Fuch chaotic mapping, non-linearity inertia weights, refraction reverse learning and so on to further improve the accuracy of the width prediction model. Finally, the model was simulated and tested by the hot rolling production site data of a steel mill. The results show that the data-driven IBOA-ELM model has obvious advantages in prediction accuracy, and the hit rate of predicting the rough rolling width within ±8 mm is 93%, which is significantly better than the comparison models, and can be used for predicting the rough rolling width of hot rolled strips with strong applicability.

Funds:
国家自然科学基金资助项目(62263026)
AuthorIntro:
作者简介:陈啸天(1999-),男,硕士研究生,E-mail:1571059802@qq.com;通信作者:张帅(1986-),男,硕士,工程师,E-mail:364776437@qq.com
Reference:

[1]李兴田.提高热轧带钢宽度控制精度的综合措施[J].轧钢,2004,21(1):49-51.


 

Li X T. Complex measures to improving the width control precision of hot rolled strip[J]. Steel Rolling,2004,21(1):49-51.

 

[2]费庆,战守义,胡浩平,等.基于神经网络的热轧带钢宽度预报与设定[J].北京理工大学学报,2004,24(12):1079-1083.

 

Fei Q,Zhan S Y,Hu H P,et al. Hot strip width prediction and setup with neural networks[J]. Journal of Beijing Institute of Technology, 2004,24(12):1079-1083.

 

[3]Deng J F,Sun J,Peng W,et al.Application of neural networks for predicting hot-rolled strip crown[J].Applied Soft Computing,2019,78:119-131.

 

[4]杨金光,孙丽荣,刘华强,等.基于PSO和DE优化算法的热轧工作辊热辊形的研究 [J].塑性工程学报,2018,25(3):289-296.

 

Yang J G,Sun L R,Liu H Q,et al. Study on thermal contour of work roll in hot rolling based on PSO and DE optimization algorithm[J]. Journal of Plasticity Engineering, 2018,25(3):289-296.


 

[5]梅文娟,高媛,杜立,等.基于在线相关熵极限学习机的器件退化趋势实时流预测方法[J].仪器仪表学报,2019,40(11):212-224.

 

Mei W J,Gao Y,Du L,et al. Online sequential regularized correntropy criterion extreme learning machine on spark streaming signal prediction for electronic device degradation[J]. Chinese Journal of Scientific Instrument, 2019,40(11):212-224.

 

[6]Arora S,Singh S.Butterfly optimization algorithm:A novel approach for global optimization[J].Soft Computing,2019,23(3):715-734.

 

[7]王永贵,李鑫,关连正.求解高维优化问题的改进鲸鱼优化算法[J].计算机科学与探索,2022,16(12):2890-2902.

 

Wang Y G,Li X,Guan L Z. Improved whale optimization algorithm for solving high-dimensional optimization problems[J]. Journal of Frontiers of Computer Science and Technology, 2022,16(12):2890-2902.

 

[8]段玉先,刘昌云.基于Sobol序列和纵横交叉策略的麻雀搜索算法[J].计算机应用,2022,42(1):36-43.

 

Duan Y X,Liu C Y. Sparrow search algorithm based on Sobol sequence and crisscross strategy[J]. Journal of Computer Applications, 2022,42(1):36-43.

 

[9]王光,金嘉毅.融合折射原理反向学习的飞蛾扑火算法[J].计算机工程与应用,2019,55(11):46-51,59.

 

Wang G,Jin J Y. Moth-flame optimization algorithm fused on refraction principle and opposite-based learning[J]. Computer Engineering and Applications, 2019,55(11):46-51,59.

 

[10]赵沁峰,蔡艳平,王新军.基于WOA-ELM的锂离子电池剩余寿命间接预测[J].中国测试,2021,47(9):138-145.

 

Zhao Q F,Cai Y P,Wang X J. WOA-ELM based indirect prediction of remaining useful life of lithium-ion battery[J].China Measurement & Test, 2021,47(9):138-145.

 

[11]田宏伟,李志鹏,王煜伟,等.CEEMDAN-WOA-ELM模型风机振动趋势预测[J].中国测试,2020,46(7):146-152.

 

Tian H W,Li Z P,Wang Y W,et al. Fan vibration trend prediction based on CEEMDAN-WOA-ELM model[J].China Measurement & Test, 2020,46(7):146-152.

 

[12]Mirjalili S,Mirjalili S M,Lewis A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.

 

[13]Mirjalili S,Lewis A. The whale optimization algorithm[J].Advances in Engineering Software,2016,95: 51-67.

 

[14]张帅,王俊杰,李爱莲,等.基于改进GWO-ELM的热轧带钢卷取温度预测[J].电子测量技术,2021,44(22):50-55.

 

Zhang S, Wang J J, Li A L, et al. Improved GWO-ELM based hot rolled strip coiling temperature prediction[J]. Electronic Measurement Technology, 2021,44(22):50-55.

 

[15]李秉晨,于惠钧,丁华轩,等.基于CEEMD和LSTM-ARIMA的短期风速预测[J].中国测试,2022,48(2):163-168.

 

Li B C,Yu H J,Ding H X,et al. Short-term wind speed prediction based on CEEMD and LSTM-ARIMA[J].China Measurement & Test, 2022,48(2):163-168.


 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com