Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature rheology stress constitutive model of 55Q steel for light rail
Authors: Liu Yuhao1 Zhu Guoming1 Ping Yu2 Kuang Shuang2 An Huilong3 
Unit: 1.University of Science and Technology Beijing 2.Technical Center Tangshan Iron & Steel Group Co. Ltd. 3.HBIS Group Technology Research Institute 
KeyWords: 55Q steel rheology stress dynamic softening constitutive model prediction accuracy 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2024,49(3):219-229
Abstract:

The axial single-pass compression experiment of 55Q steel for light rail was conducted under the condition of the strain rate of 0.1-20 s-1 and the deformation temperature of 900-1200 ℃ by thermal simulation experiment machine Gleeble-3800. Then, the true stress-true strain curve of 55Q steel was obtained, and the influences of different hot working conditions on the rheology stress of 55Q steel for light rail were studied. The experiment results show that the rheology stress is lower under low strain rate at the same deformation temperature, and the rheology stress is lower at high temperature at the same strain rate, which indicates that low strain rate and high temperature are conducive to dynamic softening. The relationships between rheology stress, strain rate and deformation temperature were fitted linearly, and the modified Johnson-Cook constitutive model and the Arrhenius constitutive model based on strain compensation of 55Q steel were established. The two models were compared and analyzed. It is found that the Arrhenius constitutive model based on strain compensation has higher precision, which better reveals the thermal deformation characteristics of 55Q steel.

Funds:
国家重点研发计划(2021YFB3401000);河钢集团重点科技项目(HG2021219)
AuthorIntro:
作者简介:刘宇昊(1999-),男,硕士研究生,E-mail:lyh08082021@163.com;通信作者:朱国明(1974-),男,博士,教授,博士生导师,E-mail:zhuguoming@ustb.edu.cn
Reference:

[1]谢仕柜,李世俊.冶金部“八五”期间120个重点钢材品种简介(一)[J].轧钢,1990,(4):1-5.


 

Xie S G, Li S J. Introduction of 120 key steel varieties during the “eighth five-year plan” of the ministry of metallurgy (I)[J]. Steel Rolling, 1990,(4):1-5.

 

[2]曹国利,崔凯,李莉,等.长春轻轨发展历程及特点[J].都市快轨交通,2020,33(5):73-79.

 

Cao G L, Cui K, Li L, et al. Developmental history and characteristics of Changchun light rail transit[J]. Urban Rapid Rail Transit, 2020,33(5):73-79.

 

[3]孙蓟泉,张金旺,王永春.SPHC钢热变形行为的研究[J].钢铁,2008,(9):44-48,62.

 

Sun J Q, Zhang J W, Wang Y C. Study on hot deformation behavior of SPHC steel[J]. Iron & Steel,2008,(9):44-48,62.

 

[4]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989.

 

Zhou J H, Guan K Z. The Resistance to Plastic Deformation of Metals[M]. Beijing: China Machine Press,1989.

 

[5]刘勇.含钒低合金钢高温变形抗力研究及应用[J].钢铁钒钛,2012,33(5):60-65.

 

Liu Y. Research and application of high temperature deformation resistance in low-alloy steel with vanadium[J]. Iron Steel Vanadium Titanium,2012,33(5):60-65.

 

[6]赵志业.金属塑性变形与轧制理论[M].北京:冶金工业出版社,1992.

 

Zhao Z Y. Metal Plastic Deformation and Rolling Theory[M]. Beijing: Metallurgical Industry Press, 1992.

 

[7]王梦寒,陈明亮,王瑞,等.2Cr12NiMo1W1V超临界钢高温流变应力模型及热加工图[J].中南大学学报:自然科学版,2016,47(3):741-748.

 

Wang M H, Chen M L, Wang R, et al. High temperature flow stress model and hot processing map for 2Cr12NiMo1W1V supercritical steel[J]. Journal of Central South University:Science and Technology, 2016,47(3):741-748.

 

[8]张静,蒋春霞,乔帮威.14Cr17Ni2钢高温变形行为及本构方程的研究[J].热加工工艺,2018,47(14):38-43.

 

Zhang J, Jiang C X, Qiao B W. Deformation behavior and constitutive equation of 14Cr17Ni2 steel at high temperature[J]. Hot Working Technology, 2018,47(14):38-43.

 

[9]张龙,王东城,马晓宝,等.30Cr2Ni2Mo合金钢高温流变应力模型[J].塑性工程学报,2017,24(4):144-149,172.

 

Zhang L, Wang D C, Ma X B, et al. Flow stress model of alloy steel 30Cr2Ni2Mo at high temperature[J]. Journal of Plasticity Engineering, 2017,24(4):144-149,172.

 

[10]李冬升,赵恩旭,王威,等.IN690合金的高温本构模型及动态再结晶模型[J].金属热处理,2021,46(8):8-14.

 

Li D S, Zhao E X, Wang W, et al. High temperature constitutive model and dynamic recrystallization model of IN690 alloy[J]. Heat Treatment of Metals, 2021,46(8):8-14.

 

[11]Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J]. Materials Science and Engineering: A, 2008, 478(1-2): 130-139.

 

[12]Xiong Y B, Wen D X, Li J J, et al. High-temperature deformation characteristics and constitutive model of an ultrahigh strength steel[J]. Metals and Materials International, 2021, 27: 3945-3958.

 

[13]李波,朱国明,康永林,等.U75V钢轨轧制模拟物性参数的测定及研究[J].热加工工艺,2014,43(17):24-28.

 

Li B, Zhu G M, Kang Y L, et al. Determination and study of physical parameters of U75V rail rolling simulation[J]. Hot Working Technology, 2014,43(17):24-28.

 

[14]刘雅政,任学平,王自东,等.材料成形理论基础[M].北京:国防工业出版社,2004.

 

Liu Y Z, Ren X P, Wang Z D, et al. Theoretical Basis of Material Forming[M]. Beijing: National Defense Industry Press,2004.

 

[15]Chen L, Zhao G Q, Yu J Q. Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy[J]. Materials & Design, 2015, 74:25-35.

 

[16]Notta-Cuvier D, Langrand B, Markiewicz E, et al. Identification of Johnson-Cook′s viscoplastic model parameters using the virtual fields method: Application to titanium alloy Ti6Al4V[J]. Strain, 2013, 49(1):22-45.

 

[17]Lin Y C, Chen X M. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel[J]. Computational Materials Science, 2010, 49(3):628-633.

 

[18]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

 

[19]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

 

[20]魏海莲,周红伟,潘红波.微合金化高强钢的热变形行为及物理本构方程[J].锻压技术,2022,47(5):217-225.

 

Wei H L, Zhou H W, Pan H B. Hot deformation behaviors and physical constitutive equation of microalloyed high-strength steel[J]. Forging & Stamping Technology, 2022,47(5):217-225.

 

[21]向彪,张鹏,崔明亮.TB6钛合金的热加工工艺优化与组织预测[J].塑性工程学报,2022,29(7):107-118.

 

Xiang B, Zhang P, Cui M L. Hot working process optimization and microstructure prediction of TB6 titanium alloy[J]. Journal of Plasticity Engineering, 2022,29(7):107-118.

 

[22]刘坚,霍庆辉,汪宏斌,等.圆盘剪用YC1钢的热变形行为及热加工图[J].上海金属,2022,44(4):76-82.

 

Liu J, Huo Q H, Wang H B, et al. Hot deformation behavior and hot working map of YC1 steel for circular shear[J]. Shanghai Metals, 2022,44(4):76-82.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com